O

Coalition for
Content Provenance
and Authenticity

C2PA Technical Specification

2.2,2025-05-01:

Table of Contents

1. Introduction
1.1. Overview
1.2. Scope
1.3. Technical Overview
2. Glossary
2.1. Introductory terms
2.2. Assets and Content
2.3. Core Aspects of C2PA
2.4. Additional Terms
2.5. Overview
3. Normative References
3.1. Core Formats

3.2. Schemas

3.3. Digital & Electronic Signatures

3.4. Embeddable Formats
3.5. Other
4. Standard Terms
5. Versioning
5.1. Compatibility
5.2. Version History
6. Assertions
6.1. General
6.2. Labels
6.3. Versioning
6.4. Multiple Instances
6.5. Schema Validation

6.6. Assertion Store

6.7. Embedded vs Externally-Stored Data
6.8. Redaction of Assertions

6.9. Specifications of time in assertions

7. Data Boxes
7.1. General
7.2. Schema and Example

8. Unique Identifiers

© 00 o o o wWw N NN

NN N NN NN NNDNNNNNDDNR B B B R B H B B R
o ~N N4 N o 0 R~ N W W W oo O o W w KN NN DND o

8.1. Uniquely Identifying C2PA Manifests and Assets
8.2. Versioning Manifests Due to Conflicts

8.3. Identifying Non-C2PA Assets

8.4. URI References

9. Binding to Content

9.1. Overview
9.2. Hard Bindings
9.3. Soft Bindings

10. Claims

10.1. Overview

10.2. Syntax

10.3. Creating a Claim

10.4. Multiple Step Processing

11. Manifests

11.1. Use of JUMBF

11.2. Types of Manifests

11.3. Embedding manifests into various file formats
11.4. External Manifests

11.5. Embedding a Reference to an external Manifest

12. Entity Diagram
13. Cryptography

13.1. Hashing
13.2. Digital Signatures

14. Trust Model

14.1. Overview

14.2. Identity of Signers
14.3. Validation states
14.4. Trust Lists

14.5. X.509 Certificates

15. Validation

15.1. Validation Process

15.2. Returning Validation Results

15.3. Displaying Manifest Information
15.4. Determining the hashing algorithm
15.5. Locating the Active Manifest

15.6. Locating and Validating the Claim
15.7. Validate the Signature

28
29
29
30
34
34
34
35
36
36
36
39
44
47
47
53
55
55
56
57
58
58
59
63
63
63
64
65
66
73
73
74
83
83
84
86
86

15.8. Validate the Time-Stamp
15.9. Validate the Credential Revocation Information
15.10. Validate the Assertions
15.11. Validate the Ingredients
15.12. Validate the Asset’s Content
16. User Experience
16.1. Approach
16.2. Principles
16.3. Disclosure Levels
16.4. Public Review, Feedback and Evolution
17. Information security
17.1. Threats and Security Considerations
17.2. Harms, Misuse, and Abuse
18. C2PA Standard Assertions
18.1. Introduction
18.2. Regions of Interest
18.3. Metadata About Assertions
18.4. Standard C2PA Assertion Summary
18.5. Data Hash
18.6. BMFF-Based Hash
18.7. General Box Hash
18.8. Collection Data Hash
18.9. Multi-Asset Hash
18.10. Soft Binding
18.11. Cloud Data
18.12. Embedded Data
18.13. Thumbnail
18.14. Actions
18.15. Ingredient
18.16. Metadata
18.17. Time-stamps
18.18. Certificate Status
18.19. Asset Reference
18.20. Asset Type
18.21. Depthmap
18.22. Font Information

19. Patent Policy

87

90

92

99
103
111
111
111
111
112
113
113
114
116
116
116
124
129
130
133
146
155
158
162
167
169
169
170
186
198
200
201
202
203
207
209
213

Appendix A: Embedding manifests
A.1l. Supported Formats
A.2. Embedding manifests in multi-part assets
A.3. Embedding manifests into non-BMFF-based assets
A.4. Embedding manifests into PDFs
A.5. Embedding manifests into BMFF-based assets
A.6. Embedding manifests into ZIP-based formats
Appendix B: Implementation Details for c2pa.metadata
B.1. Completely Supported Schemas
B.2. Partially Supported Schemas
Appendix C: Considerations for Deprecation

C.1. Status of Constructs

214
214
216
216
220
222
229
232
232
232
240
240

This work is licensed under a Creative Commons Attribution 4.0 International License.

THESE MATERIALS ARE PROVIDED “AS IS.” The parties expressly disclaim any warranties (express, implied, or
otherwise), including implied warranties of merchantability, non-infringement, fitness for a particular purpose,
or title, related to the materials. The entire risk as to implementing or otherwise using the materials is assumed
by the implementer and user. IN NO EVENT WILL THE PARTIES BE LIABLE TO ANY OTHER PARTY FOR LOST
PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER
FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS DELIVERABLE OR ITS GOVERNING
AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE,
AND WHETHER ORNOT THE OTHER MEMBER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 1. Introduction

1.1. Overview

With the increasing velocity of digital content and the increasing availability of powerful creation and editing
techniques, establishing the provenance of media is critical to ensure transparency, understanding, and ultimately,

trust.

We are witnessing extraordinary challenges to trust in media. As social platforms amplify the reach and influence of
certain content via ever more complex and opaque algorithms, mis-attributed and mis-contextualized content
spreads quickly. Whether inadvertent misinformation or deliberate deception via disinformation, inauthentic content
is on therise.

Currently, those who wish to include metadata about their work cannot do so in a secure, tamper-evident and
standardized way across platforms. Without this information coming from a recognized source, publishers and
consumers lack critical context for determining the authenticity of media.

Provenance empowers content creators and editors, regardless of their geographic location or degree of access to
technology, to disclose information about how an asset was created, how it was changed and what was changed.
Each time an asset is changed, the existing provenance of the asset is preserved, with each new change being added
to the provenance. In this way, content with provenance provides indicators of authenticity so that consumers can
have awareness of altered content. Such provenance could include what has been changed and the source of those
changes. This ability to provide provenance for creators, publishers and consumers is essential to facilitating trust
online.

To address this issue at scale for publishers, creators and consumers, the Coalition for Content Provenance and
Authenticity (C2PA) has developed this technical specification for providing content provenance and authenticity. It is
designed to enable global, opt-in, adoption of digital provenance techniques through the creation of a rich ecosystem
of digital provenance enabled applications for a wide range of individuals and organizations while meeting

appropriate security requirements.

This specification has been, and continues to be, informed by scenarios, workflows and requirements gathered from
industry experts and partner organizations, including the Project Origin Alliance and the Content Authenticity
Initiative (CAl). It is also possible that regulatory bodies and governmental agencies could utilize this specification to
establish standards for digital provenance.

1.2. Scope

This specification describes the technical aspects of the C2PA architecture; a model for storing and accessing
cryptographically verifiable information whose trustworthiness can be assessed based on a defined trust model.
Included in this document is information about how to create and process a C2PA Manifest and its components,
including the use of digital signature technology for enabling tamper-evidence as well as establishing trust.

https://www.originproject.info/
https://contentauthenticity.org/
https://contentauthenticity.org/

Prior to developing this specification, the C2PA created our Guiding Principles that enabled us to remain focused on
ensuring that the specification can be used in ways that respect privacy and personal control of data with a critical
eye toward potential abuse and misuse. For example, implementers of this specification are strongly encouraged to
provide creators and publishers of media assets with the ability to control whether certain provenance data is

included.
From the overarching goals section of the guiding principles:
C2PA specifications SHOULD NOT provide value judgments about
IMPORTANT whether a given set of provenance data is 'good' or 'bad,’ merely

whether the assertions included within can be validated as associated
with the underlying asset, correctly formed, and free from tampering.

It is important that the specification does not negatively impact content accessibility for consumers.

Other documents from the C2PA will address specific implementation considerations such as expected user

experiences and details of our threat and harms modelling.

1.3. Technical Overview

The C2PA information comprises a series of statements that cover areas such as asset creation, edit actions, capture
device details, bindings to content and many other subjects. These statements, called assertions, make up the
provenance of a given asset and represent a series of trust signals that can be used by a human to improve their view
of trustworthiness concerning the asset. Assertions are wrapped up with additional information into a digitally signed
entity called a claim. This claim is digitally signed by the claim generator on behalf of the signer, using the signer’s

signing credential, producing the claim signature.

These assertions, claims, and the claim signature are all bound together into a verifiable unit called a C2PA Manifest
(see Figure 1, “A C2PA Manifest and its constituent parts”) by a hardware or software component called a claim

generator. The set of C2PA Manifests, as stored in the asset’s Content Credential, represent its provenance data.

https://c2pa.org/principles/

C2PA Manifest

Claim Signature

Claim

Assertions

Figure 1. A C2PA Manifest and its constituent parts

1.3.1. Establishing Trust

The basis of making trust decisions in C2PA, our trust model, is the identity of the signer associated with the
cryptographic signing key used to sign a claim in a C2PA Manifest. The claim signatures of C2PA Manifests, when
combined with trusted time-stamps, can undergo the validation process indefinitely to determine if claims were

signed while the signing credentials were valid and not revoked.

1.3.2. An Example

A very common scenario will be a user taking a photograph with their C2PA-enabled camera (or phone). In that
instance, the camera would create a manifest containing some assertions including information about the camera
itself, a thumbnail of the image and some cryptographic hashes that bind the photograph to the manifest. These
assertions would then be listed in the Claim, which would be digitally signed and then the entire C2PA Manifest (see
Figure 2, “Example C2PA Manifest of a Photograph”) would be embedded into the output JPEG. This C2PA Manifest

would remain valid indefinitely.

Figure 2. Example C2PA Manifest of a Photograph

A Manifest Consumer, such as a C2PA validator, helps users to establish the trustworthiness of the asset by first

validating the digital signature and its associated credential. It also checks each of the assertions for validity and

presents the information contained in them, and the signature, to the user in a way that they can then make an

informed decision about the trustworthiness of the digital content.

1.3.3. Design Goals

In the creation of the C2PA architecture, it was important to establish some clear goals for the work to ensure that the

technology was usable across a wide spectrum of hardware and software implementations worldwide and accessible

to all. Those goals can be found in Table 1, “C2PA Design Goals”.

Table 1. C2PA Design Goals

Goal

Privacy

Responsibility

Scalability

Extensibility

Interoperability

Whole Workflow
Applicability

Technology
Minimalism

Security

Content Ubiquity

Flexible Locality

Global Universality

Accessibility

Harms and Misuse

Evolving

Description

Enable users to control the privacy of their information, including consumption data and

information recorded in provenance
Ensure consumers can determine the provenance of an asset

Enable creation/consumption/validation of media provenance at the same scale as media

creation/consumption on the web

Ensure future metadata and credential providers are able to add their information without
requiring input or approval from the C2PA

Ensure that differing implementations are able to operate with each other without ambiguity

Maintain the provenance of the asset across multiple tools, from creation through all

subsequent modification and publication/distribution

Create only the minimum required novel technology in the specification by relying on prior,

well-established techniques

Design to ensure that consumers can trust the integrity and source of provenance, and

ensure the design is reviewed by experts
Enable the inclusion of provenance for all common media types, including documents

Enable both online and offline (asset-only) storage and consumption/validation of

provenance
Design for the needs of interested users throughout the world

Ensure that the technology can be used in a way that conforms to recognized accessibility
standards, such as WCAG

Design to avert and mitigate potential harms, including threats to human rights and

disproportionate risks to vulnerable groups

Continuous review of the specification against these goals to ensure that they remain our

priority

Chapter 2. Glossary

2.1. Introductory terms

2.1.1. Actor

A human or non-human (hardware or software) that is participating in the C2PA ecosystem. For example: a camera
(capture device), image editing software, cloud service or the person using such tools.

NOTE An organization or group of actors may also be considered an actor in the C2PA ecosystem.

2.1.2. Claim generator

The non-human (hardware or software) actor that generates the claim about an asset as well as the claim signature,

thus leading to the asset's associated C2PA Manifest.

2.1.3. Signer

The credential holder of a private key that is used to sign the claim. The signer is identified by the subject of the
credential.

2.1.4. Manifest consumer

An actor who consumes an asset with an associated C2PA Manifest for the purpose of obtaining the provenance data
from the C2PA Manifest.

2.1.5. Validator

A Manifest Consumer whose role is to perform the actions described in validation.

2.1.6. Action

An operation performed by an actor on an asset. For example, "create", "embed", or "apply filter".

2.2. Assets and Content

2.2.1. Digital content

The portion of an asset that represents the actual content, such as the pixels of an image, along with any additional
technical metadata required to understand the content (e.g., a colour profile or encoding parameters).

2.2.2. Asset metadata

Non-technical information about the asset and its digital content.

2.2.3. Asset
Afile or stream of data containing digital content, asset metadata and optionally, a C2PA Manifest.

NOTE For the purposes of this definition, we will extend the typical definition of "file" to include cloud-
native and dynamically generated data.

2.2.4. Derived asset

A derived asset is an asset that is created by starting from an existing asset and performing actions to it that modify its

digital content.

EXAMPLE: An audio stream that has been shortened or a document where pages have been added.

2.2.5. Asset rendition

A representation of an asset (either as a part of an asset or a completely new asset) where the digital content has had

a 'non-editorial transformation' action (e.g., re-encoding or scaling) applied.

EXAMPLE: A video file that is re-encoded for reduced screen resolution or network bandwidth.

2.2.6. Composed asset

A composed asset is an asset that is created by building up a collection of multiple parts or fragments of digital
content (referred to as ingredients) from one or more other assets. When starting from an existing asset, it is a special
case of a derived asset - however a composed asset can also be one that starts from a "blank slate".

EXAMPLES:

+ Avideo created by importing existing video clips and audio segments into a "blank slate".

« An image where another image is imported and super-imposed on top of the starting image.

2.2.7. Editorial transformation

A type of transformation that alters either the intent or meaning or both of the digital content.

2.3. Core Aspects of C2PA

2.3.1. Assertion

A data structure which represents a statement either made (or "created") by the signer or simply gathered at claim

generation-time, concerning the asset. This data is a part of the C2PA Manifest.

2.3.2. Claim

A digitally signed and tamper-evident data structure that references a set of assertions, concerning an asset, and the
information necessary to represent the content binding. If any assertions were redacted, then a declaration to that
effect is included. This data is a part of the C2PA Manifest.

2.3.3. Claim signature

The digital signature on the claim created using the private key owned by a signer. The claim signature is a part of the
C2PA Manifest.

2.3.4. C2PA Manifest

The set of information about the provenance of an asset based on the combination of one or more assertions

(including content bindings), a single claim, and a claim signature. A C2PA Manifest is part of a C2PA Manifest Store.

NOTE A C2PA Manifest can reference other C2PA Manifests.

2.3.5. C2PA Manifest Store

A collection of C2PA Manifests that can either be embedded into an asset or be external to its asset.

2.3.6. Content Credential

This is the preferred non-technical term for a C2PA Manifest. The C2PA Manifest Store therefore represents the

Content Credentials of an asset.

Content Credentials also refers to the overall C2PA technology, and is therefore essentially treated as a plural noun. If
a C2PA Manifest is a Content Credential, then multiple C2PA Manifest or the broader, universal concept is Content
Credentials.

2.3.7. Active Manifest

The last manifest in the list of C2PA Manifests inside of a C2PA Manifest Store which is the one with the set of content

bindings that are able to be validated.

2.3.8. Provenance

The logical concept of understanding the history of an asset and its interaction with actors and other assets, as

represented by the provenance data.

2.3.9. Provenance data
The set of C2PA Manifests for an asset and, in the case of a composed asset, its ingredients.

NOTE A C2PA Manifest can reference other C2PA Manifests.

2.3.10. Authenticity

A property of digital content comprising a set of facts (such as the provenance data and hard bindings) that can be
cryptographically verified as not having been tampered with.

2.3.11. Content binding

Information that associates digital content to a specific C2PA Manifest associated with a specific asset, either as a
hard binding or a soft binding.

2.3.12. Hard binding

One or more cryptographic hashes that uniquely identifies either the entire asset or a portion thereof.

2.3.13. Soft binding

A content identifier that is either (a) not statistically unique, such as a fingerprint, or (b) embedded as an invisible

watermark in the identified digital content.

2.3.14. Trust signals

The collection of information that can inform a Manifest Consumer’s judgment of the trustworthiness of an asset.

These are in addition to the signer upon which the fundamental trust model relies.

2.3.15. C2PA Trust List

A C2PA-managed list of X.509 certificate trust anchors that issue certificates to hardware & software signers that use

them to sign claims.

2.4. Additional Terms

2.4.1. Durable Content Credential

A Durable Content Credential is a Content Credential for which there exists one or more soft bindings that enable its

discovery in a manifest repository.

2.4.2. Fingerprint

A set of inherent properties computable from digital content that identifies the content or near duplicates of it.

EXAMPLE: An asset can become separated from its C2PA Manifest due to removal or corruption of asset
metadata. A fingerprint of the digital content of the asset could be used to search a database to recover the
asset with an intact C2PA Manifest.

2.4.3. Invisible Watermark

Information incorporated in a substantially human imperceptible way into the digital content of an asset which can
be used, for example, to uniquely identify the asset or to store a reference to a C2PA Manifest.

2.4.4. Visible Watermark

A perceptible component of the digital content carrying some human consumable information about the provenance

of the asset.

2.4.5. Manifest Repository

A repository into which C2PA Manifests and C2PA Manifest Stores can be placed, and which can be searched using a

content binding.

2.5. Overview

This image shows how all these various elements come together to represent the C2PA architecture.

10

Manifest

Active manifest

@ Claim signature

Content binding

@ Provenance

Hard binding

Soft binding
(optional)

— @ Asset metadata
\/Z @ Digital content

Figure 3. Elements of C2PA

11

Chapter 3. Normative References

3.1. Core Formats

« CBOR
« JSON
« JSON-LD

« JPEG universal metadata box format (JUMBF)

3.2. Schemas

« CDDL
« JSON Schema

« Dublin Core Metadata Initiative

3.3. Digital & Electronic Signatures

« Cryptographic Message Syntax (CMS)
« Internet X.509 PKI Time-Stamp Protocol

« Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile

+ Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA

+ US Secure Hash Algorithms

« Online Certificate Status Protocol (OCSP)

« JSON Web Algorithms (JWA)

+ PKCS #1: RSA Cryptography Specifications Version 2.2

» Edwards-Curve Digital Signature Algorithm (EdDSA)

+ CBOR Object Signing and Encryption (COSE)

+ Using RSA Algorithms with COSE Messages

+ Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure
+ X.509 Certificate General-Purpose Extended Key Usage (EKU) for Document Signing

+ CBOR Object Signing and Encryption (COSE): Header Parameters for Carrying and Referencing X.509 Certificates
+ Internet X.509 Public Key Infrastructure: Logotypes in X.509 Certificates

+ JSON Advanced Electronic Signatures (JAdES)

12

https://tools.ietf.org/html/rfc8949
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/json-ld11/
https://www.iso.org/standard/73604.html
https://datatracker.ietf.org/doc/html/rfc8610
https://json-schema.org/specification-links.html#2020-12
https://www.dublincore.org/specifications/dublin-core/dces/
https://tools.ietf.org/html/rfc2630
https://tools.ietf.org/html/rfc3161
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5758
https://datatracker.ietf.org/doc/html/rfc6234
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8230
https://tools.ietf.org/html/rfc8410
https://datatracker.ietf.org/doc/html/rfc9336
https://datatracker.ietf.org/doc/html/rfc9360
https://www.rfc-editor.org/rfc/rfc9399.html
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf

3.4. Embeddable Formats

« 1SO Base Media File Format (BMFF)
« PDF 1.7

« PDF 2.0

« JPEG 1

« JPEG XT, ISO/IEC 18477-3

« JPEG XL, ISO/IEC 18181-2:2024
« PNG

+ SVG

. GIF

« ID3

» Digital Negative or DNG

« TIFF/EP

« TIFF v6)

» RIFF

« Multi-Picture Format (MPF)

« Open Font Format

» OpenType

3.5. Other

eXtensible Metadata Platform (XMP)
+ JSON-LD serialization of XMP

+ IPTC Photo Metadata Standard

o Exif

« UUID

« Uniform Resource Names (URNS)

Universally Unique IDentifiers (UUIDs)
« ISO 8601
« RFC 3339

« RFC 2326

Media Fragments

https://www.iso.org/standard/74428.html
https://www.iso.org/standard/51502.html
https://www.iso.org/standard/75839.html
https://www.iso.org/standard/18902.html
https://www.iso.org/standard/66071.html
https://www.iso.org/standard/80617.html
https://www.w3.org/TR/2003/REC-PNG-20031110/
https://www.w3.org/TR/SVG11/
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://id3.org/id3v2.3.0
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_spec_1_6_0_0.pdf
https://www.iso.org/standard/29377.html
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://www.cipa.jp/e/std/std-sec.html
https://www.iso.org/standard/74461.html
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://www.iso.org/standard/75163.html
https://www.iso.org/standard/79384.html
http://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata
https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc8141
https://tools.ietf.org/html/rfc9562
https://www.iso.org/iso-8601-date-and-time-format.html
https://https://www.rfc-editor.org/rfc/rfc3339
https://www.ietf.org/rfc/rfc2326.txt
https://www.w3.org/TR/media-frags/

14

» Web Annotation Data Model
« Brotli Compressed Data Format

« RFC 5646, BCP 47

https://www.w3.org/TR/annotation-model/
https://datatracker.ietf.org/doc/html/rfc7932
https://www.rfc-editor.org/info/rfc5646

Chapter 4. Standard Terms

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14, RFC 2119, and RFC 8174 when they appear in any casing (upper, lower or mixed).

15

https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174

Chapter 5. Versioning

5.1. Compatibility

As the Content Credentials specification has evolved, constructs such as box labels, assertions (and their fields),
claims and time-stamps have also evolved. New assertions have been added, and some existing assertions and the
claim have newer versions with additional fields. In addition, some constructs have been deprecated. In this
specification, when a construct is marked as deprecated, that means that a claim generator shall not write that

construct (or value), but that a validator should read it.

To facilitate interoperability between claim generators and validators, a claim generator declares which version of the
specification it is using to generate the claim. When a claim generator declares that it is using a version of the
specification, it is declaring that the active manifest of the asset is produced in accordance with that version of the
specification and thus does not contain any deprecated constructs listed under that version of the specification in

Table 19, “Status of constructs” of Appendix C, Considerations for Deprecation.

NOTE This specification does not dictate the specific technical manner for this declaration, but it is
expected that guidance will be provided through other means.

A validator shall be compatible with at least one version of the specification, but may be compatible with additional
versions. A validator that is compatible with a specific version of the specification shall support all non-deprecated
constructs listed for that version. If the validator encounters a manifest that uses constructs from a version of the
specification that the validator does not support (either because they are deprecated or unknown), it may ignore the
deprecated construct and process the rest of manifest as if that construct were not present. Alternatively, the
validator may treat the entire manifest as having unknown provenance, by returning either the
ingredient.unknownProvenance ormanifest.unknownProvenance status code as appropriate.

5.2. Version History

5.2.1.2.2 - May 2025

This version focuses on both technical and editorial changes to the specification to clarify some of the new features of
2.1, while addressing requests from implementers. The specification has been updated to reflect the latest best
practices in the field.

+ Added new supplementary specifications for the Soft Binding Resolution API

+ Added new fields to the ingredient assertion to indicate soft-binding manifest recovery

+ Added support for multi-part assets, such as Android Motion Photos

+ Added support for adding time-stamps and revocation information in an update manifest, replacing time-stamp
manifests

+ Added support for a "claimed signature creation time"

16

+ Added support for new c2pa-kp-claimSigning EKU

Restricted use of the C2PA Trust List to certificates with the c2pa-kp-claimSigning EKU

Introduced digitalSourceType values http://c2pa.org/digitalsourcetype/
trainedAlgorithmicData (replacing c2pa.trainedAlgorithmicData) and http://c2pa.org/
digitalsourcetype/empty

Replaced data boxes with embedded data assertions
Provided additional guidance on zeroing out redacted assertion
Clarified use of created_assertions and gathered_assertions with respect to the Trust Model
Clarified terminology around "signer" and "claim generator", with respect to their roles
Changes and improvements in various hard binding assertions
o Allow c2pa.hash.data to exclude classic metadata sections of an asset
o Add support for exclusionsin the c2pa.hash.boxes assertion
o Add support for use of a c2pa.hash.bmff assertion in an update manifest
Clarified what JUMBF boxes are allowed in the Assertion store
Clarified certificate revocation handling
Clarified time-stamp validation
Improvements and clarifications to action assertions
Improvements to soft-binding assertions
Reworked the BMFF hashing diagrams for clarity & correctness

Removed requirement that all manifests in a manifest store must be referenced

5.2.2. 2.1 - September 2024

This version focuses on both technical and editorial changes to the specification for the purposes of improving the

security and reliability of Content Credentials. All publicly disclosed security vulnerabilities have been addressed, and

the specification has been updated to reflect the latest best practices in the field.

Clear definitions of Manifest & Asset states
o Well-formed Manifests
o Valid Manifests
o Trusted Manifests
o Valid Assets
Clear definitions and processes for handling deprecation and versioning

New c2pa URN namespace for labelling manifests!

17

http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/empty

o including a fully specified ABNF
« New ingredients v3 assertion
o Supports richer models of ingredient-based workflows.
o Support fordataTypes and claimSignature.
o Fields renamed to be more consistent with other assertions.
o Added new validation status fields to accompany the new status info
odc:titleanddc: format are now optional
« New c2pa.hash.bmff.v3 assertion
o Supports hashing of fixed & variable block sizes for BMFF-based assets
« New time-stamp manifest
o Establishing a "time of existence" for a given asset.
o Similar to an update manifest, but with the signer being a TSA
« Improved model for doing standard RFC 3161 time-stamping.
o s7gTst2 &CTT time-stamping
o Introduces the new C2PA TSA Trust List
+ Improvements in Validation
o Detailed validation instructions for all standard assertions
o Validation of ingredients is now required when using the ingredients assertion
o Extended ingredient validation to provide more detailed status information
o Support for validation of redacted assertions in ingredients
o Addition of detailed requirements for validation of time-stamps
o Hashed URIs to data boxes, and any custom boxes, are now validated
o Defined procedure for handling manifests with matching unique IDs
o Address "orphaned manifests" in the validation process
o LOTS of new validation status codes, including a new "informational" code type
+ Improvements in documentation & security of hashing methods
o BMFF-based assets
o "general boxes"
o ZIP
+ The format embedding section has been moved to its own annex

o Added support for JPEG-XL

18

+ Improvements to soft bindings
« Improvements to action assertions
o Eithera c2pa.createdorac2pa.opened is now mandatory in a standard manifest
o Some new standard action types were added
o Itis now possible to have multiple action assertions in a single manifest
o Action templates are now better explained with more examples.
o RFC 3339-based regions of interest
« The various types/forms of unique identifiers for assets have been clarified.
+ Added some missing compatibility support for JPEG Trust
+ Cleaned up all CDDLs, including removing any normative language
« And various areas of editorial improvements
o Redefined custom labels to a custom naming scheme.
o Embedding in PDFs

o LOTS of editorial improvements to prepare the document for standardization by 1ISO

5.2.3. 2.0 - January 2024

This version represents a significant departure from previous versions. It reduces the use of the term "actor", which
no longer represents humans and organisations. In addition to validator-configured trust lists, it also introduces a
new default trust list, the "C2PA Trust List", which is intended to cover certificates issued to hardware and software.
This philosophical change led to the following functional changes in the specification:
+ Only X.509 certificates may be used for signing.
« Improvements to the Validation & Trust Model sections
o Introduces the concepts of "well-formed" and "valid" C2PA Manifests
o Clarifies various aspects of the validation process
+ Refined metadata handling
o removed the deprecated Exif, IPTC and Schema.org metadata assertions
o defined a new general "metadata assertion" concept
o c2pa.metadata only allows a fixed set of schemas & values
o the process for creating c2pa.metadata is now documented in more detail
o XMP processing sections have been revamped to reflect relevant changes
o improved recommendations concerning hashing of standard metadata locations outside the manifest

« Removed the "W3C Verifiable Credentials" section

19

o Removed any references to it and the VC Store.

o Removed the actors field from the actions assertion

o Removed identified humans from assertion metadata
« Removed the "Training & Data Mining" assertion

« Removed the "Endorsements" assertion
In addition, the following other changes were made to improve various aspects of the spec:

« Version v2 version of the claim.
o Removes deprecated and unused fields
o Splitassertionsintocreated_assertions &gathered_assertions
o Only allows a single claim generator, which must be the signer
o claim-generator-info now has a specificoperating_systemfield
+ Box-based hashing is now strongly recommended for any format that supports it
« Removed the deprecated c2pa.hash.bmff assertion
« Added a new c2pa.watermarked action
« c2pa. font actions are now just font actions
o alsoc2pa.font.infoisnowjust font.info
+ Cleaned up rendering of CDDL schemas
« Updated some normative references & removed notes about future versions

+ Lots of editorial improvements including fixed links

5.2.4.1.4 - November 2023

« Added support for embedding a C2PA Manifest into a ZIP-based format (e.g., EPUB, OOXML, ODF, OpenXPS)
« Manifests can now be compressed into a special brob box.

« Added support for multiple file, aka collection, hashing

+ Added new regions of interest for text-based formats (e.g., PDF, Office, EPUB, etc.)

+ Added new c2pa.metadata assertion to support Exif, IPTC, Schema.org and XMP

« Major revision to TIFF embedding support

Added support for embedding C2PA Manifests inside of OpenType and TrueType fonts
« Introduced support for object-level manifests in PDF
« Extended the Link header support for embedded manifests

« Clarified issues with box hashing

20

« Clarified issues on signing including time stamping, PKIStatus & document signing EKU
« Align with Exif 3.0
+ Improvements to the CDDL schemas

« Many editorial improvements

5.2.5.1.3 - April 2023

« New v2 version of the actions assertion with support for many new options

« New v2 version of the ingredient assertion with support for embedded data

New asset reference & asset type assertions

« New data boxes, for storing arbitrary data inside the Manifest

New general box hash methodology for a more inclusive byte range hashing
+ New "Regions of Interest" data structures that can be applied to various assertions

« Added document signing EKU as an alternative default EKU for C2PA signers when a validator is not configured
with an EKU list

« Added anew digitalSourceType field for use by C2PA
« Added support for many new formats: MPF, WebP, AIFF, AVI, GIF

+ Updated Entity diagram to reflect additions since 1.0

Updated COSE header definition for X.509 certificates to RFC 9360

Updated the guidance on PDF embedding and its relationship to PDF signatures

+ Updated information about JUMBF hashing and JUMBF box toggles

Deprecated v1 of the BMFF Hash

Clarified use of the JUMBF Protection Box in a C2PA Manifest

Clarified C2PA-specific requirement that all intermediate X.509 certificates be included in COSE signatures

Clarified that time-stamps are valid indefinitely

LOTS of editorial improvements!!

5.2.6.1.2 - October 2022

+ Added details about how to embed a C2PA Manifest in DNG or TIFF
+ Added new digitalSourceType field to Actions
+ Changed stds.iptc.photometadata > stds.iptctosupportIPTCvideo metadata

« Clarified versioning of assertions when adding optional fields

21

5.2.7.1.1 - September 2022

+ Define a mechanism to support salting box hashing

« New c2pa.hash.bmff.v2 assertion, with changes to hashing model, to improve security
+ Enable assertion metadata for the Claim

+ Replaced claim_generator_hints withclaim_generator_info
« Added a new assertion to support the concept of Endorsements

« Improvements to the c2pa.actions assertion

o All Error & Status Codes are now prefixed with c2pa

+ Define mechanism for redaction of W3C VC’s

« Clarify validation of EKUs in certificates

« Validation algorithm revised to reflect technical changes

« Corrections to the CDDL and JSON schemas to match normative text

+ Revise figures to reflect changes

« Various Editorial and Typographical Corrections

« Update Normative References (incl. JUMBF & W3C VC Data Model)

5.2.8.1.0 - December 2021

« Initial Release

22

Chapter 6. Assertions

6.1. General

It is expected that each claim generator, used by actors in the system that creates or processes an asset, will create or
assemble one or more assertions about when, where, and how the asset was originated or transformed. An assertion
is labelled data, typically (though not required to be) in a CBOR-based structure which represents a declaration about
an asset. Some of these assertions will contain human-generated information (e.g., alternate text for accessibility)

while others will come from machines (software/hardware) providing the information they generated (e.g., camera
type).

Some examples of assertions are:

« metadata (e.g., camera information such as maker or lens);

« actions performed on the asset (e.g., clipping, color correction);
« thumbnail of the asset or its ingredients;

« content bindings (e.g., cryptographic hashes).

Certain assertions may be redacted by subsequent claims (see Section 6.8, “Redaction of Assertions”), but they

cannot be modified once made as part of a claim.

6.2. Labels

6.2.1. Namespacing

String values in C2PA data structures may be organized into namespaces using a period (.) as a separator. The C2PA
namespace, c2pa, shall be the beginning of any string value defined in this specification. Entity-specific namespaces
shall begin with the Internet domain name for the entity similar to how Java packages are defined (e.g.,

com. litware,net.fineartschool).

The period-separated components of an entity-specific namespace shall follow the variable naming convention ([a-
zA-Z20-9] [a-zA-Z0-9_-]*) specified in the POSIX or C locale, as defined in the ABNF below (ABNF for
Namespaces).

ABNF for Namespaces
qualified-namespace = "c2pa" / entity
entity = entity-component *x("." entity-component)
entity-component = 1(DIGIT / ALPHA) x(DIGIT / ALPHA / "-" / "_m)

23

6.2.2. Label Naming

Each assertion has a label defined either by the C2PA specifications or an external entity. These labels are strings
which are namespaced, as described in the preceding clause or by an entity. The most common labels will be defined
in the c2pa namespace, but labels may use any namespace that follows the conventions. Labels are also versioned
with a simple incrementing integer scheme (e.g., c2pa.actions.v2). If no version is provided, it is considered as
v1. The list of publicly known labels can be found in Chapter 18, C2PA Standard Assertions.

Previous versions of this document also provided for namespacing for well-established standards,
NOTE but that has been superseded by simply having them via entity-specific namespaces (e.g., org.iso,
org.w3).

ABNF for Assertion Labels

namespaced-label = qualified-namespace label

qualified-namespace = "c2pa" / entity

entity = entity-component *x("." entity-component)
entity-component = 1(DIGIT / ALPHA) %(DIGIT / ALPHA / "-" / "_")
label = 1x("." label-component)

label-component = 1(DIGIT / ALPHA) x(DIGIT / ALPHA / "-" / "_")

The period-separated components of a label follow the variable naming convention ([a-zA-Z] [a-zA-Z0-9_-]%)
specified in the POSIX or C locale, with the restriction that the use of a repeated underscore character (__) is reserved
for labelling multiple assertions of the same type.

6.3. Versioning

When an assertion’s schema is changed, it should be done in a backwards-compatible manner. This means that new
fields may be added and existing ones may be marked as deprecated (i.e., can be read, but never written). Existing
fields shall not be removed. The label would then consist of an incremented version number, for example moving
from c2pa.action (deprecated) to c2pa.action.v2.

Since the addition of optional fields can be done while maintaining backwards compatibility, such fields may be
added to an existing assertion’s schema without a change to the version number.

Deprecated fields for C2PA standard assertions shall be indicated in Chapter 18, C2PA Standard Assertions. Claim
generators shall not insert data into deprecated assertion fields when creating assertions.

In those situations where a non-backwards compatible change is required, instead of increasing the label’s version
number, the assertion shall be given a new label.

NOTE For example, c2pa.ingredient could be changed to the fictional c2pa.component.

6.4. Multiple Instances

Multiple assertions of the same type can occur in the same manifest, but since assertions are referenced by claims via

24

their label, the assertion labels are required to be unique. This is accomplished by adding a double-underscore and a
monotonically increasing index to the label. For example, if a manifest contains a single assertion of type
c2pa.metadata, then the assertion label will be c2pa.metadata. If a manifest contains three assertions of this
type, the labels will be c2pa.metadata, c2pa.metadata__1and c2pa.metadata__2.

When a label includes a version number, that version number is part of the label itself. As such, when there are
multiple instances, the instance number continues to follow the label - e.g., c2pa.ingredient.v2__2.

6.5. Schema Validation

The schemas provided in this document, as well as the machine readable ones that are downloaded-able from the
C2PA website, should only be used for aids in understanding the syntax to be read or written. It is not necessary, nor it

is recommended, for a validator to perform any form of schema validation.

6.6. Assertion Store

The set of assertions referenced by a claim in a manifest are collected together into a logical construct that is referred
to as the assertion store. The assertions and assertion store shall be stored as described in Section 11.1, “Use of
JUMBEF”; in particular, each assertion referenced in a claim’s created_assertions or gathered_assertions
(but not redacted_assertions) shall be present in the assertion store located in the same C2PA Manifest as the

claim.

In each manifest, there is a single assertion store. However, as an asset may have multiple manifests associated with
it, each one representing a specific series of assertions, there may be multiple assertion stores associated with an

asset.

6.7. Embedded vs Externally-Stored Data

Some assertion data, due to its size or an infrequent need for it, may be externally hosted. Such data are not
embedded in the assertion store, but instead are referenced by URI. This is accomplished through a cloud data
assertion (see Section 18.11, “Cloud Data”). Unlike embedded assertion data, cloud data is not retrieved nor validated
as part of manifest validation, and are only retrieved and validated when specifically needed by an application
according to a different set of validation rules as described in Section 15.10, “Validate the Assertions”.

6.8. Redaction of Assertions

Assertions that are present in an asset-embedded manifest may be removed from that asset’s manifest when the

asset is used as an ingredient. This process is called redaction.

Redaction involves either removing the entire assertion from the manifest’s assertion store or retaining the labelled
assertion container but replacing the JUMBF Content boxes within that assertion with a single UUID Content box
whose ID field has a value of CAA9S8EEE-9D4D-F80E-86AD-4DFFCA263973 (called the C2PA Redaction UUID)

25

and whose DATA field contains only zeros (binary 0x00 values).

In addition, a record that something was removed shall be added to the claim in the form of a URI reference to the
redacted assertion in the redacted_assertions field of the claim. It is also strongly recommended that the claim
generator should add a c2pa.redacted action assertion with a redacted field as described in Section 18.14.4.7,

“Parameters”.

When redacting an ingredient assertion that references a C2PA Manifest, the associated manifest shall be removed
from the C2PA Manifest Store if no other references to it remain after redacting.

Because each assertion’s URI reference includes the assertion label, it is also known what type of
NOTE information (e.g., thumbnail, metadata, etc.) was removed. This enables both humans and machines

to apply rules to determine if the removal was acceptable.

Unless the redaction of the assertion also requires modification to the digital content, an update manifest shall be
used to document the redaction as it makes a statement about the non-changes to the content.

Claim generators shall not redact assertions with a label of c2pa.actions orc2pa.actions.v2 as this assertion
type represents essential information in understanding the history of an asset. They shall also not redact any hard
binding to content assertion - either a c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.collection.data, c2pa.hash.bmff.v2 (deprecated), or c2pa.hash.bmff.v3, as these

assertions are necessary for determining the integrity of the asset.

When assertions are redacted in an ingredient manifest that is referenced via either of the
deprecated ingredient assertions (c2pa.ingredient or c2pa.ingredient.v2), validation of

NOTE that assertion will fail (as described in Section 15.11.3, “Ingredient Assertion Validation”), because
only c2pa.ingredient.v3 assertions support the claim signature hash validation method,
described in Section 15.11.3.3.1, “Claim Signature Hash Validation Method”.

6.9. Specifications of time in assertions

The default specification for a date and/or time value in an assertion is the date/time format and serialized in CBOR as
tag number 0 (RFC 8949, 3.4.1) and represented in CDDL as type tdate.

There is one case, as described when adding a claimed time of signing, where the time is represented as a special type
of CBOR date/time.

Additionally there is the time-stamp assertion, which uses the standard time-stamping formats as described in the

signing process.

The reason why there are different types of date & time representations is to allow for the most appropriate

representation, based on existing standards in use, for each specific use case.

26

https://datatracker.ietf.org/doc/html/rfc8949

Chapter 7. Data Boxes

This section is retained for historical purposes. The concept of a data box has been
IMPORTANT deprecated in favour of a standard assertion that uses a standard JUMBF Embedded File

content type box to contain the data. For more information, see [_data_box].

7.1. General

Data boxes provide a way to include arbitrary data into the C2PA Manifest that is referenced from an assertion,
instead of embedding it directly into a field of the assertion as a binary string. These data boxes are placed in the Data
Box Store and each one will be a single CBOR Content Type box (cbor).

The data of a data box is provided directly as the value of the data field, which is a bstr, so any binary data can be
provided. The type of the data shall be identified using the dc: format field, with a standard IANA media type.

IANA structured suffixes (https://www.iana.org/assignments/media-type-structured-suffix/media-
NOTE type-structured-suffix.xhtml), such as +json and +zip, are also supported as values of the
dc: format field.

Sometimes, it may also be necessary to provide one or more asset types as the value of the data_types field for
more clarity on the format and usage of that data.

A data box shall have a label of c2pa.data and follows the rules of assertion labels with respect to multiple
instances.

7.2. Schema and Example

The schema for this type is defined by the data—-box-map rule in the CDDL Definition in CDDL for data box.:

CDDL for data box

; box allowing for the storage of arbitrary data

data-box-map = {

"dc:format": format-string, ; IANA media type of the data

"data" : bstr, ; arbitrary text/binary data

? "data_types": [1x Sasset-type-map], ; additional information about the data's type
}

27

https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml
https://datatracker.ietf.org/doc/html/rfc8610

Chapter 8. Unique Identifiers

8.1. Uniquely Identifying C2PA Manifests and Assets

Every C2PA Manifest is uniquely identified and referenced by a Uniform Resource Name RFC 8141, URNs from the
c2pa URN namespace, and a C2PA asset is uniquely identified by the c2pa URN value of its active manifest. The
ABNF for the C2PA URN is described by ABNF for C2PA URN.

A c2pa URN shall consist of two mandatory and two optional components, in the following order, with colons (:)
between each section.

« URN identifier (urn:c2pa): REQUIRED.

« UUID v4, in string representation (as per RFC 9562, section 4): REQUIRED.

+ Claim Generator identifier string : OPTIONAL.

« Version and Reason string (as described below) : OPTIONAL.

When present, the "Claim Generator identifier" string shall consist of no more than 32 characters from the ASCII range
(as per RFC 20), but which are not Control Characters (RFC 20, 5.2) or Graphic Characters (RFC 20, 5.3).

When present, the "Version and Reason" string shall consist of a positive integer, followed by an underscore (_) and
then another positive integer. The details of each of these values and how they are to be used is described in
Versioning Manifests Due to Conflicts. In addition, when a "Version and Reason" string is present, a "Claim Generator
identifier" string shall also be present but it may be empty.

ABNF for C2PA URN

c2pa_urn = c2pa-namespace UUID [claim-generator [version-reason]]
c2pa-namespace = "urn:c2pa:"

; this definition is taken from RFC 9562

UUID = 4hexOctet "-"
2hexOctet "-"
2hexOctet "-"
2hexOctet "-"
6hexOctet
hexOctet = HEXDIG HEXDIG
DIGIT = %x30-39
HEXDIG = DIGIT / llAll / IIBII / IICII / IIDII / IIEII / llFll

;5 ASCII, but not Control Characters or Graphic Characters
visible-char-except-space = %x21-7E / %x80-FF

; claim-generator-identifier is a string of 0 to 32 visible-char-except-space characters
; this means that an empty string is valid

claim-generator = ":" claim-generator-identifier

claim-generator-identifier = 0*32visible-char-except-space

; version-reason is a string consisting of a positive integer
; followed by an underscore and a positive integer

28

https://tools.ietf.org/html/rfc8141

version-reason = ":" version "_" reason
version = 1xDIGIT
reason = 1*%DIGIT

Examples:

e urn:c2pa:F9168C5E-CEB2-4FAA-B6BF-329BF39FAL1E4
e urn:c2pa:F9168C5E-CEB2-4FAA-B6BF-329BF39FA1E4:acme
e urn:c2pa:F9168C5E-CEB2-4FAA-B6BF-329BF39FAl1E4:acme:2_1
e uUrn:c2pa:F9168C5E-CEB2-4FAA-B6BF-329BF39FA1E4::2_1
Previous versions of this specification used RFC 9562, UUIDs URN, and had the identifier of the claim

NOTE generator at the beginning of the URN. However, this was found to be not in compliance with either
RFC 9562, UUIDs or RFC 8141, URNSs.

This c2pa URN identifier is used in various parts of a C2PA-enabled workflow, such as when identifying an asset as an

ingredient in a derived or composed asset.

8.2. Versioning Manifests Due to Conflicts

Situations may arise where it is necessary to re-label a C2PA Manifest due to a conflict of identifiers. For example, if a
claim generator had already added an ingredient manifest into the asset’s C2PA Manifest Store, then later added
another ingredient which had a manifest with the same label in its manifest store, but this latter version of the
manifest was different due, for example, to a manipulation of one of its assertion values. In such a case, the modified
version of the ingredient manifest needs to be copied into the asset’s C2PA Manifest Store, and shall be re-labeled.

To re-label a manifest:

« If the current URN does not contain a "Claim Generator identifier string", then the claim generator shall append a

« In all cases, the claim generator shall append a : to the URN followed by a monotonically increasing integer,
starting with 1, followed by an underscore (_) and then an integer from the list below representing the reason for
the re-labeling.

o 1: Conflict with another C2PA Manifest

For example, if the claim generator has to re-label a C2PA Manifest for the second time due to a conflict, the appended
string would be :2_1.

8.3. Identifying Non-C2PA Assets

When working with assets that do not contain a C2PA Manifest, but the asset contains embedded XMP which include
values for xmpMM:DocumentID and/or xmpMM:InstanceID as defined in XMP Specification Part 2, 2.2, those
values shall be used as identifiers for the asset.

29

https://tools.ietf.org/html/rfc9562
https://tools.ietf.org/html/rfc9562
https://tools.ietf.org/html/rfc8141
https://github.com/adobe/xmp-docs/blob/master/XMPNamespaces/XMPDataTypes/ResourceEvent.md

When working with assets that do not contain a C2PA Manifest and do not contain embedded XMP, the claim

generator may use any method of its choosing to provide it with a unique identifier.

8.4. URI References

8.4.1. Standard URIs

All references to information in the manifest, whether stored internally to the asset (i.e., embedded) or stored
externally to the asset (e.g., in the cloud), shall be referenced via JUMBF URI references as defined in ISO 19566-
5:2023, C.2. These URIs are normally used either as part of a hashed_uri orhashed_ext_uri data structure.

When the reference is to a compressed manifest, the JUMBF URI shall not contain anything about the brob box, but
the URI to the manifest is treated as if the manifest was not compressed. This means that the URI would include the
label of the c2ma or c2um box, but not the label of the c2cm box. In addition, the URI reference to a compressed
manifest shall not include the label of the brob box - but only the label of the compressed manifest itself.

When resolving an internal JUMBF URI reference, if any label in the path is ambiguous due to multiple child boxes

having the same label, a validator shall treat the reference as unresolved.

8.4.2. Hashed URIs

8.4.2.1. Embedded

Ahashed_ur is used when the URI is for something embedded in the same C2PA Manifest Store.

This specification provides an equivalent hashed-uri-map data structure (in CDDL for hashed URI) for schemas
using a CDDL Definition:

CDDL for hashed URI

; The data structure used to store a reference to a URL within the same JUMBF and its hash.
We use a socket/plug here to allow hashed-uri-map to be used in individual files without
having the map defined in the same file
$hashed-uri-map /= {

"url": jumbf-uri-type, ; JUMBF URI reference

? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all hashes in this claim, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken from an enclosing
structure as defined by that structure. If both are present, the field in this structure is
used. If no value is present in any of these places, this structure is invalid; there is no
default.

"hash": bstr, ; byte string containing the hash value

}

; with CBOR Head (#) and tail ($) are introduced in regexp, so not needed explicitly
jumbf-uri-type /= tstr .regexp "self#jumbf=[\\w\\d\/J[\\w\\d\\.\/:=J+[\\w\\d]"

Because assertion stores shall be located in the same C2PA Manifest box as the claim that refers to them, only
self#jumbf URIs are permitted. These self#jumbf URIs may be relative to the entire C2PA Manifest Store, in

30

https://datatracker.ietf.org/doc/html/rfc8610

which case they shall start with a / (U+002F, Slash), or relative to the current C2PA Manifest. URIs shall not contain the
sequence . . (a pair of U+002E, Full Stop).

Example 1. Example seLf#jumbf URIs

The following are examples of valid se L f#jumbf URIs:

« self#jumbf=/c2pa/urn:c2pa:FO95F30E-6CD5-4BF7-8C44-
CE8420CA9FB7/c2pa.assertions/c2pa.thumbnail.claimis relative to the entire store (since it
starts with /);

« self#jumbf=c2pa.assertions/c2pa.thumbnail.claimwould be relative to the manifest of the

box containing the URI.

8.4.2.2. External

When referring to a resource that exists externally to the C2PA Manifest Store, a hashed-ext-uri-map data
structure is used. It is a variation on the hashed-uri, in that it references an external URI instead of a
self#jumbf. The hashed-ext-uri data structure is defined by the hashed-ext-uri-map rule in the
following CDDL in CDDL for hashed external URI:

CDDL for hashed external URI

; The data structure used to store a reference to an external URL and its hash.
; We use a socket/plug here to allow hashed-ext-uri-map to be used in individual files
; without having the map defined in the same file
$hashed-ext-uri-map /= {

"url": ext-url-type, ; http/https URI reference

"alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash on this URI's data, taken from the C2PA hash algorithm
identifier list. Unlike alg fields in other types, this field is mandatory here.

"hash": bstr, ; byte string containing the hash value

? "dc:format": format-string, ; IANA media type of the data

? "size": size-type, ; Number of bytes of data

? "data_types": [1x Sasset-type-map], ; additional information about the data's type

}

; with CBOR Head (#) and tail ($) are introduced 1in regexp, so not needed explicitly
ext-url-type /= tstr .regexp "https?:\/\/[-a-zA-Z20-9@:%._\\+~#=]1{2,256}\\.[a-z]{2,6}\\b[-a-
ZA-Z0-9@:%_\\+.~#2&//=]*"

In keeping with common practice, it is recommended that the https scheme be used to
retrieve assertion data to protect the privacy of the data in transit, but http is also permitted
IMPORTANT because the data’s integrity is protected by the hash field and this privacy may not be
required in all circumstances. Authors of manifests with external URIs should choose the

scheme to suit their needs.

The optional dc: format field, when present, provides an alternative to the Content-Type field of the http(s)
headers. If present, this field shall be used as the required format retrieved during any content negotiate/request.

31

Sometimes, it may also be necessary to provide one or more asset types as the value of the data_types field for

more clarity on the format and usage of that data.

An optional s1ize field is also provided to specify the size of the data to be retrieved. This may be useful to a validator

as a hint in addition to the hash.

NOTE It could be used to provide information about whether to perform downloading or validation or both.

8.4.2.3. Hashing JUMBF Boxes

When creating a URI reference to any JUMBF box (e.g., assertions and data boxes), the hash shall be performed over
the contents of the structure’s JUMBF superbox, which includes both the JUMBF Description Box and all content
boxes therein (but does not include the structure’s JUMBF superbox header).

NOTE More details on hashing can be found at Section 13.1, “Hashing”.

As described in the latest version of JUMBF (ISO 19566-5:2023), and shown in Figure 4, “Example c2pa.actions
assertion”, anew Private field can be present as part of any JUMBF Description box. This C2PA specification defines
the C2PA salt as a Private field whose value is a standard box consisting of:

+ abox length (LBox, as a 4-byte big-endian unsigned integer);

« abox type (TBox, 4-byte big-endian unsigned integer, with a value of c2sh (for C2PA salt hash));

+ and payload data (consisting of randomly-generated binary data of either 16 or 32 bytes in length).

32

JUMBF Superbox (‘jumb")

JUMBF Description Box (‘jumd’)

TYPE chor
TOGGLES 00010011
LABEL c2pa.actions
PRIVATE

LBox... | TBox... | 16 or 32 bytes of arbitrar...

JUMBF Content Box (‘cbor")

CBOR data for actions-map

Text is not SVG - cannot display

Figure 4. Example c2pa.actions assertion

Chapter 9. Binding to Content

9.1. Overview

A key aspect to the standard C2PA manifest is the presence of one or more data structures, called content bindings,
that can uniquely identify portions of the asset. There are two types of bindings that are supported by C2PA - hard
bindings and soft bindings. A hard binding (also known as a cryptographic binding) enables the validator to ensure
that (a) this manifest belongs with this asset and (b) that the asset has not been modified, by determining values that
can match only this asset and no other, not even other assets derived from it or renditions produced from it. A soft
binding is computed from the digital content of an asset, rather than its raw bits. A soft binding is useful for identifying
derived assets and asset renditions.

A single manifest shall not contain more than one assertion defining a hard binding but may contain zero or more

assertions defining soft bindings.

9.2. Hard Bindings

9.2.1. Hashing using byte ranges

The simplest type of hard binding that can be used to detect tampering is a cryptographic hashing algorithm, as
described in Section 13.1, “Hashing”, over some or all of the bytes of an asset. This approach can be used on any type
of asset, but should only be considered for formats that don’t support one of the forms of box-based hashing.

When using this form of hard binding, a data hash assertion is used to define the range of bytes that are hashed (and
those that are not). Because a data hash assertion defines a byte range, it is flexible enough to be usable whether the

assetis a single binary or represented in multiple chunks or portions.

9.2.2. Hashing using a general box hash

When an asset’s format is a non-BMFF-based box format, such as JPEG, PNG, GIF or others listed here, then a general
box hash assertion should be used. This assertion consists of an array of structures, each one listing one or more
boxes (by their name/identifier) and a hash that covers that data of those boxes (and any possible data that may be
present in the file between them), along with the algorithm used for hashing.

9.2.3. Hashing a BMFF-formatted asset

If the asset is based on ISO BMFF then a hard binding optimized for the box-based format (called BMFF-based hash

assertions) may be used instead.

For a monolithic MP4 file asset where the mdat box is validated as a unit, the assertion is validated nearly identically
to a data hash assertion. It simply uses a box exclusion list instead of byte ranges to define the range of bytes that are
hashed (and those that are not).

34

https://www.iso.org/standard/74428.html

For fragmented MP4 (fMP4) files, the assertion itself shall be combined with chunk-specific hashing information which

is located as specified in Section A.5, “Embedding manifests into BMFF-based assets”.

9.2.4. Hashing a Collection

In workflows where the C2PA Manifest will refer to a collection of assets, instead of a single asset, the collection data
hash assertion shall be used as the method to specify the hard bindings for the assets in the collection.

For example, a collection data hash assertion can be used to describe each folder of a training data
set for an Al/ML model.

NOTE

9.2.5. Asset Metadata Bindings

The claim generator may exclude asset metadata (i.e., metadata outside a C2PA Manifest such as EXIF or XMP) from
the content binding. To do so, it shall use the applicable exclusion mechanisms for data hash assertions, general box
hash assertions, or BMFF-based hash assertions.

NOTE Excluded asset metadata are not attributed to the signer.

Any asset metadata values that are supported by the common metadata assertion, as described in Appendix B,
Implementation Details for c2pa.metadata, and can be asserted by the signer should be copied into such an

assertion and included in the C2PA Manifest.

9.3. Soft Bindings

9.3.1. General

Soft bindings are described using soft binding assertions such as a fingerprint computed from the digital content or
an invisible watermark embedded within the digital content. These soft bindings enable digital content to be

matched even if the underlying bits differ.
NOTE For example, an asset rendition in a different resolution or encoding format.

Additionally, if a C2PA manifest is removed from an asset, but a copy of that manifest remains in a provenance store

elsewhere, the manifest and asset may be matched using available soft bindings.

Because they serve a different purpose, a soft binding shall not be used as a hard binding.

9.3.2. List of Allowed Soft Binding Algorithms

All soft bindings shall be generated using one of the algorithms listed in the soft binding algorithm list as supported by

this specification.

35

Chapter 10. Claims

10.1. Overview

A claim gathers together all the assertions about an asset at a given time including the set of assertions for binding to
the content. The claim is then cryptographically hashed and signed as described in Section 10.3.2.4, “Signing a
Claim”. A claim has all the same properties as an assertion including being assigned the label (c2pa.claim.v2) but
it does not support the use of assertion metadata. A claim is encoded as CBOR data, and such, shall comply with the
Core Deterministic Encoding Requirements of CBOR (see RFC 8949, clause 4.2.1).

NOTE Previous versions supported the use of assertion metadata with claims, but this has been
deprecated.

A previous version of this specification used the label c2pa.claim and associated claim-map for the Claim, but
those have now been deprecated. Validators should still accept this label (and associated claim-map), but claim

generators shall not produce such a claim.

10.2. Syntax

10.2.1. Schema

The schema for this type is defined by the claim-map-v2 and claim-map rules in the following CDDL Definition

for claims with labels c2pa.claim.v2 and c2pa.claim, respectively:

; CDDL schema for a claim map in C2PA
claim-map = {

"claim_generator": tstr, ; A User-Agent string formatted as per
http://tools.ietf.org/html/rfc7231#section-5.5.3, for including the name and version of the
claims generator that created the claim

"claim_generator_info": [1*x generator-info-map],

"signature": jumbf-uri-type, ; JUMBF URI reference to the signature of this claim

"assertions": [1x Shashed-uri-map],

"dc:format": tstr, ; media type of the asset

"instanceID": tstr .size (1..max-tstr-length), ; uniquely identifies a specific version of
an asset

? "dc:title": tstr .size (1..max-tstr-length), ; name of the asset,

? "redacted_assertions": [1* jumbf-uri-type], ; List of JUMBF URI references to the
assertions of ingredient manifests being redacted

? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all data hash assertions listed in this claim unless otherwise
overridden, taken from the C2PA data hash algorithm identifier registry. This provides the
value for the 'alg' field in data-hash and hashed-uri structures contained in this claim

? "alg_soft": tstr .size (1..max-tstr-length), ; A string identifying the algorithm used
to compute all soft binding assertions listed in this claim unless otherwise overridden,
taken from the C2PA soft binding algorithm identifier registry."

? "metadata": $assertion-metadata-map, ; additional information about the assertion

}

; CDDL schema for a claim map in C2PA
claim-map-v2 = {

36

https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8610

"instanceID": tstr .size (1l..max-tstr-length), ; uniquely identifies a specific version of

an asset

"claim_generator_info": $generator-info-map, ; the claim generator of this claim

"signature": jumbf-uri-type, ; JUMBF URI reference to the signature of this claim

"created_assertions": [1x Shashed-uri-map],

? "gathered_assertions": [1x $hashed-uri-map],

? "dc:title": tstr .size (1..max-tstr-length), ; name of the asset,

? "redacted_assertions": [1*x jumbf-uri-type], ; List of JUMBF URI references to the
assertions of ingredient manifests being redacted

? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all data hash assertions listed in this claim unless otherwise
overridden, taken from the C2PA data hash algorithm identifier registry. This provides the
value for the 'alg' field in data-hash and hashed-uri structures contained in this claim

? "alg_soft": tstr .size (1..max-tstr-length), ; A string identifying the algorithm used
to compute all soft binding assertions listed in this claim unless otherwise overridden,
taken from the C2PA soft binding algorithm identifier registry."

? "metadata": $assertion-metadata-map, ; (DEPRECATED) additional +information about the
assertion

}

generator-info-map = {

"name": tstr .size (1..max-tstr-length), ; A human readable string naming the claim
generator

? "version": tstr, ; A human readable string of the product's version

? "jcon": S$hashed-uri-map / $hashed-ext-uri-map, ; hashed URI to the icon (either embedded

or remote)

? "operating_system": tstr, ; A human readable string of the operating system the claim
generator 1is running on

* tstr => any

}

An example of the claim-map-v2 structure in CBOR diagnostic notation (RFC 8949, clause 8):

"alg" : "sha256",
"claim_generator_info" : {
"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10"
1,
"signature" : "self#jumbf=c2pa.signature",
"created_assertions" : [
{
"url": "self#jumbf=c2pa.assertions/c2pa.hash.data",
"hash": b64'U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7nlng="
1,
{
"url": "self#jumbf=c2pa.assertions/c2pa.thumbnail.claim",
"hash": b64'G5hfIwYeWTL1f1lxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
},
{
"url": "self#jumbf=c2pa.assertions/c2pa.ingredient.v3",
"hash": b64'Yzag405j04xPyfANVtw7ETLbFSWZNfeM78gbSi8Abkk="
}
1,
"redacted_assertions" : [
"self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.assertions/c2pa.metadata"
]
}

37

https://datatracker.ietf.org/doc/html/rfc8949

10.2.2. Fields
If present, the value of dc: title shall be a human-readable name for the asset.
NOTE The c2pa.claimhasadc: format field which is no longer presentin c2pa.claim.v2.

If the asset contains XMP, then the asset’s xmpMM: InstanceID should be used as the instanceID. When no XMP
is available, then some other unique identifier for the asset shall be used as the value for instanceID.

NOTE Some field names, such as dc: title, have namespace prefixes as their names and definitions are
taken directly from the XMP standard. However, their usage in C2PA does not require the use of XMP.

The signature field shall be present containing a URI reference to a claim signature.

The created_assertions field shall be present and it shall contain one or more URI references to assertions
being made by this claim. In a standard manifest, it shall contain, at minimum, a reference to an assertion that

represents a hard binding and a reference to an actions assertion.

NOTE All created_assertions are attributed to the signer as the Trust Model is rooted in the trust of
the signer.

When present, the gathered_assertions field shall contain one or more URI references to assertions that have
been provided to the claim generator by other components in the workflow.

By putting an assertion into this list, the claim generator is declaring that the assertion is part of the

NOTE claim, but it was not sourced from the claim generator and is not attributed to the signer. For
example, assertions containing information entered by a human actor would be listed in

gathered_assertions.

When present, the redacted_assertions field shall contain one or more URI references to redacted assertions.

10.2.3. Claim Generator Info

10.2.3.1. General

Detailed information about the claim generator shall be present as the value of claim_generator_info. A
Manifest Consumer shall use the value of claim_generator_info in determining information about the claim
generator for itself or for presentation in a UX.

NOTE The c2pa.claim has a claim_generator field, whose value is a simple string, which is no
longer presentin c2pa.claim.v2.

10.2.3.2. Generator Info Map

When adding a claim_generator_info field, its value is a generator-info-map object which shall contain a

name field. It may also contain either a version field or an icon field or both. In addition, any other field is

38

permitted, using the standard entity-specific namespacing described in Section 6.2.1, “Namespacing”. The data in
this object shall represent the non-human (hardware or software) actor that actually generated the claim (aka the

claim generator itself).

A claim generator may desire to provide a graphical representation of itself, referred here as an icon, to a Manifest
Consumer that is presenting a user experience. The value of the icon field, if present, shall be a hashed URI. This
hashed URI shall be to an embedded data assertion whose label is c2pa.icon and follows the rules of assertion
labels with respect to multiple instances. Manifest Consumers should also support the data box approach

recommended by earlier versions of this specification.

NOTE As with the assertions array, the hash algorithm used for a hashed URI is determined by the a'l g field
present in the hashed URI, or when absent, by an a'lg field in the claim.

Example using claim generator info

{
"claim_generator_info" : {
"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10",
"Jcon": {
"url": "http://cdn.examplephotoagency.com/logo.svg",
"hash": "5bdec8169b4e4484b79abad44cee5c6bd"
}
}
}

10.3. Creating a Claim

10.3.1. Creating Assertions

Before the claim can be finalized, all assertions need to be created and stored in a newly created C2PA Assertion Store

as described later in this document.

When creating a standard manifest, it may not be possible to know all of the required binding information at the time
of claim creation, in which case use the multiple step processing method to setup and then later fill-in the

information.

10.3.2. Preparing the Claim

10.3.2.1. Adding Assertions and Redactions

The claim shall contain a created_assertions field and may contain a gathered_assertions field. The
combined values from those two fields represent a list of all of the URI references for all assertions that were added to
the assertion store that are being "claimed" by this claim. In a standard manifest, the created_assertions field’s

value shall include at least one assertion that represents a hard binding.

39

If any assertions in ingredient claims are being redacted, their URI references shall be added to list which is the value

of the redacted_assertions field.

10.3.2.2. Adding Ingredients

In many authoring scenarios, an actor does not create an entirely new asset but instead brings in other existing assets
on which to create their work - either as a derived asset, a composed asset or an asset rendition. These existing assets

are called ingredients and their use is documented in the provenance data through the use of an ingredient assertion.

When an ingredient contains one or more C2PA manifests, those manifests shall be inserted into this asset’s C2PA
Manifest Store to ensure that the provenance data is kept intact. Such ingredient manifests are added to the JUMBF
as described in Section 11.1.4, “C2PA Box details”. If a manifest with the same unique identifier is already present in
the C2PA Manifest Store, the two shall be compared (via hashing). If they are identical, the new manifest shall be
ignored. If they are different, the new manifest shall be added to the store after changing its unique identifier to a new
value as described in Chapter 8, Unique Identifiers.

If an ingredient’s manifest is remote, and the claim generator is unable to retrieve the manifest, it should use an error
codeof manifest.inaccessible toreflect that.

10.3.2.3. Connecting the Signature

The signature cannot be part of the signed payload, but since its label is pre-defined, then the full URI reference is also
known. As such, we can include that in the claim by setting the value of the signature field of the claim to that URI
reference.

NOTE This provides the explicit binding of the claim to its signature.

10.3.2.4. Signing a Claim

Producing the signature is specified in Section 13.2, “Digital Signatures”.

For both types of manifests, standard and update, the payload field of Sig_structure shall be the serialized
CBOR of the claim document, and shall use detached content mode.

The serialized COSE_S1ignl_Tagged structure resulting from the digital signature procedure is written into the
C2PA Claim Signature box.

10.3.2.5. Time-stamps

10.3.2.5.1. Use of RFC 3161

If possible, the claim generator should use a RFC 3161-compliant Time Stamp Authority (TSA) (RFC 3161) to obtain a
trusted time-stamp proving that the signature itself actually existed at a certain date and time and incorporate that
into the COSE_Signl_Tagged structure as a countersignature.

Claim generators are encouraged to obtain and include time-stamps to ensure their manifests will remain valid. As

40

http://datatracker.ietf.org/doc/html/rfc3161

described in Chapter 15, Validation, manifests without time-stamps cease to be valid when the signing credential

expires or becomes revoked. A manifest shall contain only one time-stamp.

NOTE Previous versions of this specification allowed for multiple time-stamps to be included in a manifest.

10.3.2.5.2. Choosing the Payload

A previous version of this specification used the same value for the payload field in the time-stamp as was used in
the Sig_signature as described in Section 10.3.2.4, “Signing a Claim”. This payload is henceforth referred to as a
"vl payload" in a "v1 time-stamp" and is considered deprecated. A claim generator shall not create one, but a

validator shall process one if present.

The "v2 payload", of the "v2 time-stamp", is the value of the signature field of the COSE_Signl_Tagged
structure created as part of Section 10.3.2.4, “Signing a Claim”. A "v2 payload" shall be used by claim generators

performing a time-stamping operation.

NOTE The value of the signature field includes the entire serialized bstr, including the bytes that
indicate the major type and the length (not just the string itself).

10.3.2.5.3. Obtaining the time-stamp

All time-stamps shall be obtained as described in RFC 3161 with the following additional requirements:
« The MessageImprint of the TimeStampReq structure (RFC 3161, section 2.4.1) shall be computed by creating
the ToBeS+igned value in RFC 8152, section 4.4, with the following values for elements of Sig_structure:
o The context element shall be CounterSignature.
o The payload element shall be the value described by Section 10.3.2.5.2, “Choosing the Payload”.
o The remaining elements of Sig_structure are as described in Section 13.2.3, “Computing the Signature”.

« The ToBeS1igned value is then hashed using a hash algorithm from the allowed list in Section 13.1, “Hashing”
that the TSA supports, and that hash algorithm and value are placed in the MessageImprint. If the TSA does

not support any hash algorithms from the allowed list, it cannot be used for time-stamping.

o Where possible, the hash algorithm should use the same hash algorithm used in the digital signature of the

claim.

» The certReq boolean of the TimeStampReq structure shall be asserted in the request to the TSA, to ensure its

certificate chain is provided in the response.

10.3.2.5.4. Storing the time-stamp

v1 time-stamps (deprecated) are stored in a COSE unprotected header whose label is the string sigTst. If present,
the value of this header shall be a tstContainer defined by Example 2, “CDDL for tstContainer”. The content
of the TimeStampResp structure received in reply from the TSA shall be stored as the value of the val property of

an element of tstTokens.

41

http://datatracker.ietf.org/doc/html/rfc3161
http://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc8152

v2 time-stamps shall be stored in a COSE unprotected header whose label is the string sigTst2. When present, the
value of this header shall be a tstContainer defined by Example 2, “CDDL for tstContainer”. The value of the
timeStampToken field of the TimeStampResp structure received in reply from the TSA shall be stored as the
value of the val property of an element of tstTokens. It shall be formatted as a DER-encoded RFC 3161
TimeStampToken wrapped in a CBOR byte string.

A v2 time-stamp is equivalent to the "CTT" model of COSE Header parameter for RFC 3161 Time-
NOTE Stamp Tokens Draft. It requires that the complete signature structure be completed prior to time-
stamping, thus enabling the time-stamp to serve as a countersignature on the entire signature

structure, including the actual certificate.

If no time-stamps are included, then neither header (sigTst nor sigTst2) shall be present in the COSE

unprotected header.

Example 2. CDDL for tstContainer

; CBOR version of tstContainer and related structures based on JSON schema at
; https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json
tstContainer = {

"tstTokens": [1x tstToken]

}
tstToken = {
"val": bstr
}
The above definition is a CBOR adaptation of a subset of the schema from JAdES, section 5.3.4 and
NOTE its JSON schema, except with the modification that the content of val is a byte string and not a

Base64-encoded string.

10.3.2.6. Credential Revocation Information

If the signer’s credential supports querying its online credential status, and the credential contains a pointer to a
service to provide time-stamped credential status information, the claim generator should query the service, capture
the response, and store it in the manner described for credentials in the Trust Model. If credential revocation
information is attached in this manner, a trusted time-stamp shall also be obtained after signing, as described in
Section 10.3.2.5, “Time-stamps”.

10.3.3. Examples of Claims

10.3.3.1. Single Claim

Here is a visual representation of an image containing a single claim with multiple assertions that have been
embedded inside it.

42

http://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/draft-ietf-cose-tsa-tst-header-parameter/
https://datatracker.ietf.org/doc/draft-ietf-cose-tsa-tst-header-parameter/
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json

Pixel Data

&
C2PA Manifest
Where this is stored will vary by host file format

85cf

9042 aled 0le3

o Create original asset

o Create assertions (hashing each one) & store in C2PA Manifest

aZed

c2pa.metadata

9042
Thumbnail

{
flat": ...,
"lon": ...

i

Assertion Store

01e3 85cf
data.hash c2pa.actions
{ {

"hash": ...
+ i

“c2pa.created

F

F 3

ﬂ Claim Signature

10.3.3.2. Multiple Claims

"assertions": ["c2pafurn:cZpa/thumbnail",

"c2pa/urn:c2pa/metadata", "c2pa/urn:c2pa/actions"
"c2pa/urn:c2pa/data.hash”, -
H // JUMBF URIs to the assertions above
i 1,
0 s "signature": “#cZpa_sigl

1

Signed by: CaptureDevice
Time: 2020-06-05T10:37:00-07:00
Hash: fa3l...

Figure 5. A single claim with assertions

In this example of creating a second claim for the previous example, one of the original assertions has been redacted

from the previous claim. The visual representation for this scenario would look like:

43

o Verify claim from original asset
w © rmesoons

° Create new exported asset

° If desired, redact assertions from ingredient manifest

9042 0le3 85cf P
cam
NOTE:

Assertion a2e4 (precise location) from original asset is ﬂ Claim Signature
being redacted in this example

v

C2PA Manifest Store

C2PA Manifest Where this is stored will vary by host file format
Where this is stored will vary by host fle format ER——
. C2PA Manifest
e Create New Assertions e

9042 a2e4 0le3 85cf

Assertion Store 9042 0le3 85cf

95ca 71f4 48b9 c85a Claim
Actions Thumbnail ingredient data.hash »| _
{

€ €

B Claim Signature

& Claim Signature

"edits": [
"desaturate", “manifest”: “hash”: ...
"brighten" 5

] 3 C2PA Manifest

)
R 95ca c85a
o Compute hashes of the asset data ——
Claim

————
& Claim Signature

o Create claim data structure & store in the C2PA Manifest

{

"assertions": ["c2pa/urn:c2pa:2/actions", "c2pa/
urn:c2pa:2/thumbnail”, "c2pa/urn:c2pa:2/data.hash"],
"redacted_assertions": ["c2pa/urn:c2pa:l/metadata"],
"signature": "#C2PA_sig2"
¥

o Sign the claim and store it in the C2PA Manifest

B Claim Signature

Signed by: EditSuite
Time: 2020-06-05T12:22:43-07:00
Hash: 44..a4

Figure 6. Redacting assertions in a secondary claim

10.4. Multiple Step Processing

Some asset file formats require file offsets of the C2PA Manifest Store and asset content to be fixed before the
manifest is signed, so that content bindings will correctly align with the content they authenticate. Unfortunately, the
size of a manifest and its signature cannot be precisely known until after signing, which could cause file offsets to
change.

As an example, in JPEG 1 files, the entire C2PA Manifest Store is required to appear in the file before the image data,
and so its size will affect the file offsets of content being authenticated.

To accomplish this, a multiple step approach shall be taken, similar to how signatures in PDF are done.

10.4.1. Create content bindings

When creating a standard manifest, its claim shall include one or more content binding assertions in its list of
assertions to ensure that the asset is tamper-evident.

44

https://en.wikipedia.org/wiki/JPEG

Create the data hash assertion and add it to the assertion store taking into account the following considerations.

In many cases, such as with JPEG 1, it is not possible to hash the asset in its entirety because the manifest will be
embedded in the middle of the file, so the size or location of manifest data will not be known at the time the asset
hash is computed. This circular dependency is avoided by allowing exclusion ranges to be specified during hashing.
When exclusion ranges are specified, a single hash is performed, but only over the asset ranges that are not in any of
the exclusions.

If a manifest is embedded in the center of a JPEG 1 file in an APP11 segment, then the claim creator may exclude the

APP11 segment(s) from the hash calculation.

In order to prevent insertion attacks, it is desirable to have only a single exclusion range when possible. When the size
or location (or both) of the manifest in the asset is not known, then the start and length values in the data hash
assertion shall both be zero and the size of the pad value should be large enough to accommodate writing in the
values during the second pass. At least 16 bytes is recommended. The value of the pad key shall consist of all 0x00’s.

If padding is employed, it is possible that the pad data could be changed without resulting in a validation failure.
Claim generators shall ensure that changes to pad data (or any other excluded asset data) cannot change how the

assetis interpreted.

In the case of JPEG 1 files, this can be achieved either by eliminating padding or by ensuring that the
JFIF APP11/C2PA segments cannot be shortened of changed to a different segment type. This is
NOTE accomplished by including all the C2PA manifest segment headers (APP11) and 2-byte length fields
in the data-hash-map for all manifest-containing segments. Doing so ensures that any data changed

in the exclusion region will not be misinterpreted by JPEG processors.

10.4.2. Create a temporary Claim and Signature

Add the newly created data hash assertion reference to the claim’s assertion list providing a temporary hash value,

such as empty spaces.
At this point, the temporary claim is complete and can be added to the C2PA Manifest being created.

Since the claim is only temporary at this time, it is not possible to sign it. To ensure the claim signature box contains a
valid CBOR structure, create a temporary COSE_Signl_Tagged structure as described in RFC 8152, section 4.2. The
COSE_Signl_Tagged is a tag byte followed by a COSE_Sign1 structure, which is a four-element CBOR array.
Construct the array as follows:

« The first element is the protected header bucket (RFC 8152, section 3). Create an empty bucket by placing a
bstr of size 0 in this position.

« The second element is the unprotected header bucket, which is a CBOR map. Create a map of 1 pair. Use the
string pad as the label, and place a bstr of the desired padding size filled with zero bytes (0x00) as the value. A
25 kilobyte size is recommended for the initial size of this padding.

« The third element is the payload. Place the value nil (CBOR major type 7, value 22) here.

45

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

« The fourth elementis signature. Place a bstr of size 0 here.

10.4.3. Complete the C2PA Manifest

At this point all of the boxes that comprise the entire C2PA Manifest for the asset are completed and can be (if not
already) constructed into its final form. The asset’s C2PA Manifest, along with the manifests of any ingredients, are
combined together to form the complete C2PA Manifest Store. The active manifest is required to be the last C2PA
Manifest superbox in the C2PA Manifest Store superbox. The C2PA Manifest Store can then be embedded into the

asset as discussed in Section 11.3, “Embedding manifests into various file formats”.

10.4.4. Going back and filling in

Now that the C2PA Manifest Store has been embedded into the asset, the starting offset and the length of the active
manifest can be updated in its data hash assertion. It is necessary that when doing so, you do not change the size of
the assertion’s box, only its data. This is done by adjusting the value of the pad field to be the necessary length to "fill
up" the remaining bytes.

Preferred/deterministic CBOR serialization of pad uses a variable length integer to specify the length
of the encoded binary data. When the length goes from zero to 1 byte, or 1 to 2 bytes (etc.), the length
of the resulting pad jumps by two bytes. This means that not all paddings can be expressed using a

NOTE single padding field. For example, 24-byte and 26-byte pads can be created, but a 25-byte pad
cannot. If this situation arises, the desired padding can be split between pad and pad2. For
example, to make a 25-byte pad, a claim generator can encode 19 bytes into pad (resulting in an
encoded length of 20 bytes), and 4 bytes into pad2 (resulting in 5 bytes.)

Once the data hash assertion has been updated, it can be hashed and the hash written over the empty spaces that

were used previously to hold the location.

The claim is now complete, and it can be hashed and signed as described in Section 10.3.2.4, “Signing a Claim”, with
the resultant signature filling the pre-allocated space. The pad header can then be shrunk as required so that the
claim signature box remains the same size; because this header is unprotected, changing it does not invalidate the

claim signature.

If the serialized COSE_Signl_Tagged structure exceeds the reserved size of the C2PA Claim Signature box, multiple
step processing shall be repeated with a larger padding size chosen in Section 10.4.2, “Create a temporary Claim and
Signature”. Revocation information retrieved during the previous attempt should be reusable if it is still within its
validity interval (RFC 6960, section 4.2.2.1), but a new time-stamp will be required on the new claim with the file

offsets changed as the result of added padding.

A C2PA Manifest may contain assertions defined outside of this specification, and they could depend on file layout. As
such, the claim generator may no longer be able to change the file layout and/or offsets in a data hash assertion. In
this case, claim generators should use padding prior to assertion creation to ensure that the file layout need not

change once the assertion has been finalized.

46

https://datatracker.ietf.org/doc/html/rfc6960

Chapter 11. Manifests

11.1. Use of JUMBF

11.1.1. Rationale

In order to support many of the requirements of C2PA, C2PA Manifests needed to be stored (serialized) into a

structured binary data store that enables some specific functionality including:

« Ability to store multiple manifests (e.g., parents and ingredients) in a single container.

« Ability to refer to individual elements (both within and across manifests) via URIs.

« Ability to clearly identify the parts of an element to be hashed.

« Ability to store pre-defined data types used by C2PA (e.g., JSON and CBOR).

« Ability to store arbitrary data formats (e.g., XML, JPEG, etc.).
In addition to supporting all of the requirements above, our chosen container format - ISO 19566-5:2023 (JUMBF) - is
also natively supported by the JPEG family of formats and is compatible with the box-based model (i.e., ISOBMFF, ISO
14496-12) used by many common image and video file formats. Using JUMBF enables all the same benefits (and a few
extras, such as URI References) while being able to work with classic image formats, such as JPEG/JFIF and PNG as

well as 3D and document (e.g., PDF) formats. This serialized format shall be used also in formats that do not natively
support JUMBF, or when C2PA Manifest Stores are stored separately from the asset, such as in a separate file or URI

location.
Since most of the standard assertions, as well the claim signature, are serialized as CBOR, using
CBOR for the entire C2PA Manifest was considered but not chosen because CBOR is not a container
format.
For example, to store a "blob of JSON" inside of CBOR, and know that it is JSON (and not some other
NOTE format) would necessitate designing a data structure for storing such things. Then the parent

structure would need to be defined as to how to carry that structure. This same concept would also

have to be done for each of the native features of JUMBF.

While it would certainly be possible to re-implement all of the required functionality entirely in
CBOR, it would be a lot of work and would not fully remove the need for a JUMBF/BMFF parser in all

implementations.

11.1.2. Processing Rules

A C2PA Manifest Consumer shall never process an assertion, assertion store, claim, claim signature or C2PA Manifest
that is not contained inside of a C2PA Manifest Store. Additionally, when a C2PA Manifest Consumer encounters a
JUMBF box or superbox whose JUMBF type UUID it does not recognize, it shall skip over (and ignore) its contents.

47

https://www.iso.org/standard/68960.html
https://www.iso.org/standard/68960.html

NOTE This means that the C2PA Manifest Consumer can process private boxes that it knows about, but
ignore ones of which it is unaware.

If the Requestable and Label Present toggles are both set in the JUMBF Description box of any JUMBF box or superbox,
that box or superbox shall be maintained in any updated C2PA Manifest Store.

NOTE Boxes with those toggles set are intended to be referenced via JUMBF URIs, and their removal could
cause downstream workflows to fail.

11.1.3. Extensions

11.1.3.1. General

This section describes extensions to the JUMBF specification (ISO 19566-5:2023) required by this specification.

11.1.3.2. Compressed boxes

In order to support compressing manifests, a new brob content box is supported by C2PA. Based on a similar box in
JPEG-XL (ISO/IEC 18181-2:2024), the brob box is a content box whose contents are the Brotli-compressed bytes of
either a standard manifest or update manifest, as described in the compressed manifests clause. The brob box shall
have box ID of 0x62726F62 (brob).

JUMBF Superbox (jumb’)

JUMBF Description Box ("jumd")

TYPE c2cm
TOGGLES 00010011
LABEL urn:c2pa:....
PRIVATE
LBox | TBox | 16 or 32 bytes of arbitrary
(4 bytes)| (c2sh) | binary data (sal)

JUMBF Content Box ('brob’)

C2PA Manifest
{JUMBF Superbox)

Figure 7. Example of a compressed manifest

48

https://datatracker.ietf.org/doc/html/rfc7932

Hashing a compressed box is done in the same way as any other box, as described in Section 8.4.2.3, “Hashing JUMBF

Boxes”.

This implies that given a hashed_uri reference from an ingredient assertion to a C2PA Manifest via
the activeManifest field, the hash is computed using the same process as any other JUMBF

NOTE superbox: over the JUMBF Description Box and the brob box with its compressed payload, but
excluding the superbox’s header. The contents of the brob box are not decompressed first to
compute the hash.

11.1.4. C2PA Box details

11.1.4.1. JUMBF Description boxes

11.1.4.1.1. Labels

As described in the JUMBF specification (1ISO 19566-5:2023, A.3), a label shall be stored as ISO/IEC 10646 characters in
the UTF-8 encoding. Characters in the ranges U+0000 to U+001F inclusive and U+007F to U+009F inclusive, as well as

the specific characters '/, ";', '?', and '#', are not permitted in the label. The label shall be null-terminated.

As labels used as part of JUMBF URIs, the characters U+FEFF, U+FFFF, and U+D800-U+DFFF shall also not be used.

11.1.4.1.2. Toggles

All JUMBF Description boxes (ISO 19566-5:2023, A.3) used in a C2PA Manifest require a label, the Label Present toggle
(xxxxxx1x) shall be set. In addition, because JUMBF URIs are used to refer to boxes throughout the system (e.g.,
listing assertions, references to ingredients, etc.), the Requestable toggle (xxxxxx11) shall be set.

When including a salt in a PRIVATE box as described in Section 8.4.2.3, “Hashing JUMBF Boxes”, the Private toggle
(xxx1xxxx)shall also be set.

11.1.4.2. Manifest Store

C2PA data is serialized into a JUMBF-compatible box structure. The outermost box is referred to as the C2PA Manifest
Store, also known as the Content Credentials. Figure 8, “C2PA Manifest Store” is an example C2PA Manifest Store with
a single C2PA Manifest:

49

Manifest Store - JUMBF (" c2pa’)

Manifest (*c2ma’ : “urn:c2pa’)

‘ Claim Signature (“c2cs” : “c2pa.signature’) \

\ Claim (“c2cl’ : “c2pa.claim.v2’) \

COSE Digital Signature

CBOR

Assertion Store (“c2as” : “c2pa.assertions’)

c2pa.metadata

JSON-LD

| c2pa.thumbnail.claim |
N Embedded File ’

| c2pa.actions |

‘ # CBOR ’

|c2pa.hash.data |
‘ # CBOR ’

c2pa.ingredient

Figure 8. C2PA Manifest Store

The C2PA Manifest Store is a JUMBF superbox composed of a series of other JUMBF boxes and superboxes, each
identified by their own JUMBF type UUID and label in their JUMBF Description box. The C2PA Manifest Store shall
have a label of c2pa, a JUMBF type UUID of 63327061-0011-0010-8000-00AA00389B71 (c2pa) and shall
contain one or more C2PA manifest superboxes, also known as C2PA Manifests. The C2PA Manifest Store may also
contain JUMBF boxes and superboxes whose JUMBF type UUIDs are not defined in this specification.

NOTE Allowing other boxes and superboxes enables custom extensions to C2PA as well as enabling the
addition of new boxes in future versions of this specification without breaking compatibility.

Each C2PA Manifest shall contain the data created at the time a claim is issued including the C2PA Assertion Store, a
C2PA Claim, and a C2PA Claim Signature. A C2PA Manifest may also contain JUMBF boxes and superboxes whose
JUMBF type UUIDs are not defined in this specification.

The JUMBF type UUID for each C2PA Manifest shall be either 63326D61-0011-0010-8000-00AA00389B71
(c2ma), 6332636D-0011-0010-8000-00AA0O389B71 (c2cm) or 6332756D-0011-0010-8000-
O0AAOO389B71 (c2um) depending on the type of manifest. The C2PA Manifest box shall be labelled with a

urn:c2pa value computed as described in Unique Identifiers.

11.1.4.3. Assertion Store

The C2PA Assertion Store is a superbox that shall have a label of c2pa.assertions and a JUMBF type UUID of
63326173-0011-0010-8000-00AA00389B71 (c2as). It shall contain one or more JUMBF superboxes (called

50

C2PA Assertion boxes) whose JUMBF type defines the type of the sub-boxes that contain the assertion data (ISO
19566-5:2023, Annex B). These superboxes shall each have a label as defined in Standard Assertions and shall contain
a JUMBF Description Box, one or more JUMBF Content Boxes and possibly a Padding Box (ISO 19566-5:2023, A.4).

The JUMBF Content Type (ISO 19566-5:2023, Annex B) box(es) contained in each assertion superbox should be CBOR
Content Type (cbor), JSON Content Type (json), Embedded File Content Type (bfdb & b1idb) or UUID Content Type
(uuid) though any Content Type defined in JUMBF (ISO 19566-5:2023) and its amendments is permitted. In addition,
a JUMBF Protection Box as described in ISO 19566-4:2020 may also be used.

Custom assertions containing other formats/serializations of data, such as encrypted data, are
NOTE supported through the use of a UUID Content Box containing the custom UUID followed by the data
(1ISO 19566-5:2023, B.5).

11.1.4.4. Claim and Claim Signature

The C2PA Claim box shall have a label of c2pa.claim.v2,a JUMBF type UUID of 6332636C-0011-0010-8000~
O0AAQO0389B71 (c2cl) and shall consist of a single CBOR Content Type box (cbor).

The C2PA Claim Signature box shall have a label of c2pa.signature, a JUMBF type UUID of 63326373-0011-
0010-8000-00AA00389B71 (c2cs) and shall consist of a single CBOR Content Type box (cbor).

11.1.4.5. Ingredient Storage

When a C2PA Manifest includes ingredient assertions, and an ingredient contains a C2PA Manifest, that C2PA Manifest
shall be included to ensure that the provenance data is kept intact. Such ingredient manifests are added to the C2PA
Manifest Store as a peer of the C2PA Manifest for the asset itself.

51

Manifest Store - JUMBF (" c2pa’)

Ingredient Manifest (“urn:c2pa:ABCD ") ‘

Claim Signature

Claim

Assertion Store

Active Manifest (“urn:c2pa:WXyYz")

‘ Claim Signature (“c2cs” : “c2pa.signature”) \

COSE Digital Signature

‘ Claim (“c2cl® : “c2pa.claim.v2”) ‘
CBOR
Assertion Store (“c2as” : “c2pa.assertions’)

c2pa.metadata

JSON-LD

| c2pa.ingredient |

© CBOR
Reference to an ingredient manifest

| c2pa.actions |
| |

|c2pa.hash.data |

‘ # CBOR ’

Figure 9. C2PA Manifest Store With an Ingredient

11.1.4.6. Data Storage

This section is retained for historical purposes. The concept of a data box has been
IMPORTANT deprecated in favor of a standard assertion that uses a standard JUMBF Embedded File
content type box to contain the data. For more information about the embedded data

assertion, see Section 18.12, “Embedded Data”.

A C2PA Data Box Store is a JUMBF superbox that shall contain only one or more CBOR Content Type boxes (cbor). It
shall not contain any other type of JUMBF box or superbox. It shall have a label of c2pa.databoxes and a JUMBF
type UUID of 63326462-0011-0010-8000-00AA00389B71 (c2db).

The CBOR Content Type boxes shall have a label of c2pa.data (forembedded data).

52

Manifest Store - JUMBF (" c2pa’)

Manifest (*c2ma’ : “urn:c2pa’)

‘ Claim Signature (*c2cs” : “c2pa.signature”) ‘

“ CBOR

COSE Digital Signature

‘ Claim (" c2cl® : “c2pa.claim.v2”)

Assertion Store (*c2as” : “c2pa.assertions’)

“# JSON-LD

| c2pa.thumbnail.claim |

N Embedded File

| c2pa.actions |

‘ © CBOR

|c2pa.hash.data |

‘ © CBOR

Data Box Store (c2db" : “c2pa.databoxes’)

“ CBOR

a
N

°
o
o
M
-
Y

Figure 10. C2PA Manifest Store with Data Boxes

11.2. Types of Manifests

11.2.1. Commonalities

All C2PA Manifests shall contain an assertion store with at least one assertion, a claim and a claim signature.

11.2.2. Standard Manifests

A standard C2PA Manifest (JUMBF type UUID: 63326D61-0011-0010-8000-00AA00389B71 (c2ma)) shall
contain exactly one hard binding to content assertion - either a c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.collection.data, c2pa.hash.bmff.v2 (deprecated), or c2pa.hash.bmff.v3 based on the
type of asset and version for which the manifest is destined. Because of this requirement, they are the predominant

type of manifest that will be present in C2PA provenance data.

Manifest Consumers shall also accept standard C2PA Manifests specified with JUMBF type UUID 63326D64-0011~
0010-8000-00AA00389B71 (c2md), but claim generators shall not create manifests with this JUMBF type UUID.

53

NOTE A standard C2PA Manifest can be located either as the active manifest or as an ingredient manifest.

11.2.3. Update Manifests

There are, however, provenance workflows where additional assertions need to be added but the digital content is
not changed. In these workflows, an Update Manifest (JUMBF type UUID: 6332756D-0011-0010-8000-
OOAAOO389B71 (c2um)) should be used.

An Update Manifest shall not contain assertions of types c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.collection.data, c2pa.hash.bmff.v2 (deprecated), or c2pa.hash.bmff.v3 because the
content has not changed and therefore the bindings need not be updated. In the case of a file offset hash
(c2pa.hash.data), the C2PA Manifest Store has to continue to start at the same file offset after updating - only its

length may change. In addition, it shall not contain a c2pa.hash.multi-asset assertion.

An Update Manifest may contain assertions of type c2pa.actionsorc2pa.actions.v2, provided that the value
of the action field of each action present in the actions array of these assertions shall only be one of the following
values:

« c2pa.edited.metadata

+ c2pa.opened

+ Cc2pa.published

« c2pa.redacted

An Update Manifest shall not contain an assertion of type c2pa.actions or c2pa.actions.v2 that contains an
action field outside of this list.

An Update Manifest may contain either a time-stamp assertion, a certificate status assertion or both.
NOTE This is the replacement approach for the deprecated time-stamp manifests feature.
An Update Manifest shall not contain a thumbnail assertion.

NOTE The reason for these requirements is that an action field outside of this list or a thumbnail implies
changes to the digital content.

The Update Manifest shall contain exactly one c2pa.ingredient.v3 assertion that (a) includes both
activeManifest and claimSignature fields with values that are the URI references to the C2PA Manifest and
Claim Signature respectively (or one c2pa.ingredient.v2 or c2pa.ingredient that includes a
c2pa_manifest field) of the asset that is being updated and (b) has the value of parentOf for the
relationship field.

NOTE The ingredient’s C2PA Manifest can be either a standard manifest or an update manifest.

54

11.2.4. Compressed Manifests

Standard and Update Manifests can be compressed, in their entirety, using the Brotli compression algorithm as
described above. For either type of manifest, the value of the TYPE field shall be c2cm, the value of the label field
shall be the identical to the label of the compressed manifest superbox, and the contents of the brob content box
shall be the compressed bytes of the entire manifest superbox. See Figure 7, “Example of a compressed manifest” for

an example of a compressed standard manifest.

Any place in this specification that a standard or update manifest is referenced, a compressed

IMPORTANT o ,
standard or update manifest is also valid.

11.2.5. Time-Stamp Manifests (HISTORICAL)

This feature has been deprecated in favor of the time-stamp assertion and is not to be written
IMPORTANT by claim generators nor read by manifest consumers. Instead, a time-stamp assertion is used

to accomplish the same goals.
NOTE The information below is retained for historical purposes.

In some provenance workflows, a standard or update manifest is created offline, where it is not possible to obtain a
trusted time-stamp (as per RFC 3161) from a TSA at the time of signing. In order to accommodate this, it is possible to
use a Time-Stamp Manifest (JUMBF type UUID: 6332746D-0011-0010-8000-00AA00389B71 (c2tm)) to add

the time-stamp in a later operation when a TSA can be contacted.

11.3. Embedding manifests into various file formats

A C2PA Manifest can be embedded into a variety of file formats covering media types including images, videos, audio,
fonts, and documents. Appendix A, Embedding manifests provides the technical details on how to embed C2PA

Manifests into each specifically supported file format.

NOTE Many classic image formats such as BMP do not support the embedding of arbitrary data, so the use
of an external manifest is required.

11.4. External Manifests

In some cases, it may not be possible (or practical) to embed a C2PA Manifest Store in an asset. In those cases,
keeping the C2PA Manifests externally to the asset is an acceptable model for providing provenance to assets. The
C2PA Manifest should be stored in a location, referred to as a manifest repository, that is easily locatable by a Manifest
Consumer working with the asset, such as by reference or URI. As the C2PA Manifest Store is a JUMBF box, it shall be
served with the JUMBF Media Type, application/c2pa.

NOTE Previous versions of this specification used the media type application/x-c2pa-manifest-
store for the C2PA Manifest Store. That media type is deprecated.

55

https://datatracker.ietf.org/doc/html/rfc7932
http://datatracker.ietf.org/doc/html/rfc3161

Some common reasons to use an external manifest are:

« It may not be technically possible, such as with a . txt file.
« It may not be practical, such as when the size of the C2PA Manifest Store is larger than the asset’s digital content.

« It may not be appropriate, such as when it would modify an asset that should not be modified.

NOTE a good example of this is creating a manifest for a pre-existing asset.

11.5. Embedding a Reference to an external Manifest

If the asset has embedded XMP, and the C2PA Manifest will be stored externally, it is recommended that the claim
generator add a dcterms:provenance key to the XMP, the value (a URI reference) being where to locate the active
manifest.

A previous version of this specification also recommended using this method for references to

NOTE
embedded manifests. Now this mechanism is only for external manifests.

Since fonts do not support XMP, an equivalent method for specifying a URI to a remote C2PA Manifest Store is

described in this clause on fonts.

56

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/provenance

Chapter 12. Entity Diagram

Figure 11, “C2PA Entity Diagram” provides a look at how all of the pieces of the C2PA system integrate and relate to
each other.

Asset

Content

/ ManifestStore

Manifest Store

ActiveManifest

references
IngredlentMamfests
‘contains

Mamfest

AssertionStore
Claim

ClaimSignature

contains
Claim
. Assertions
contains
Redactions
ClaimSignature
may reference
contains may contain references references Slgner Redacuon
many‘
Assertion E‘a'"y/ Claim Signature
Data Trusted Certificate
Metadata Trusted TimeStamp
may reference

man
Ingredient Assertion
Information
Data
Thumbnail
Manifest

may reference

y
IngredientManifest

* All relationships are singular unless otherwise specified
* Green lines represent embedded/contains

*Blue lines represent linked references

* Text in italics means optional elements

Figure 11. C2PA Entity Diagram

57

Chapter 13. Cryptography

13.1. Hashing

All cryptographic hashes that are applied as per the technical requirements of this specification shall be generated
using one of the hash algorithms as described in this section. This section defines both:

« A list of hash algorithms that are allowed for generating hashes of new content as well as required for validating
hashes of existing content (the allowed list);

« A list of hash algorithms that are required to be supported for validating hashes of existing content but are not
allowed for generating hashes of new content (the deprecated list).

NOTE This section does not govern algorithms used for soft bindings as described in Section 18.10, “Soft
Binding”.

NOTE This section does not govern algorithms used by custom assertions that are defined outside of this
specification.

An algorithm shall appear in no more than one list. An algorithm that is instantiated over multiple output lengths
(such as the various lengths of SHA2) will each be considered different algorithms, and each instantiation shall be
listed separately. If an algorithm does not appear in either list, it is forbidden and shall not be used or supported.
Algorithms can be removed from the lists in order to implement forbidding an algorithm. For this reason,
implementations shall not support additional algorithms on an optional basis.

Implementers should consult this section in the current version of the specification when releasing software updates
and ensure their supported algorithms conform to it.

These lists establish the allowed algorithms for creating hashes and a string algorithm identifier to be used as the
algorithm identifier (usually called alg) in the corresponding field of C2PA data structures. The outputs of hash
functions shall be stored as their binary values encoded into CBOR as byte strings (major type 2) with a declared
length. Wherever a field contains the output of a hash function, an algorithm identifier string field shall be present
within the same structure, or within an enclosing structure, or in the claim-map or claim-map-v2 structure to
declare which algorithm was used. A hash algorithm identifier field should be present in exactly one of these places,
but if more than one is present within the structure and its enclosing structures, the nearest identifier shall be used.
Nearest is defined first as an identifier that is a sibling field of the hash value, and then the immediately enclosing
structure, up to the root structure. If no identifier is present in any of these places, then the alg field from the
claim-map or claim-map-v2 structure shall be used.

The allowed list is:

. SHA2-256 ("sha256");
« SHA2-384 ("sha384");

« SHA2-512 ("sha512").

58

The SHA-3 family of hash algorithms are not on the allowed list for consistency with the digital
NOTE signature algorithm allowed list, because COSE has not yet established digital signature algorithms
that use a SHA-3 algorithm as the hash algorithm.

The deprecated list is empty.

13.2. Digital Signatures

All digital signatures applied as per the technical requirements of this specification shall be generated using one of

the digital signature algorithms and key types listed as described in this section. This section defines both:

« A list of digital signature algorithms and key types that are allowed for generating signatures for new claim
signatures as well as required for validating existing claim signatures (the allowed list);

« Alist of digital signature algorithms and key types that are required to be supported for validating existing claim
signatures but are not allowed for generating new claim signatures (the deprecated list).

NOTE This section does not govern digital signatures used by custom assertions that are defined outside of
this specification.

These lists establish the allowed algorithms and key types by referencing an algorithm identifier from the relevant
standards that define algorithms for COSE and their mappings to CBOR identifiers, including but not limited to RFC
8152 and RFC 8230. These standards also specify the hash algorithm used in the signature scheme. Nothing in Section
13.1, “Hashing” shall apply to this use of hash algorithms; if a digital signature algorithm is present in the digital
signature algorithm and key type below, the use of its specified hash algorithm in the signature scheme shall be
allowed and followed.

NOTE Parenthetical notes in the lists below are explainers provided only as an aid to the reader.

13.2.1. Signature Algorithms
The allowed list is:

« £S256 (ECDSA with SHA-256);

ES384 (ECDSA with SHA-384);

ES512 (ECDSA with SHA-512);

PS256 (RSASSA-PSS using SHA-256 and MGF1 with SHA-256);

PS384 (RSASSA-PSS using SHA-384 and MGF1 with SHA-384);

PS512 (RSASSA-PSS using SHA-512 and MGF1 with SHA-512);
« EdDSA (Edwards-Curve DSA).

o Ed25519 instance only. No other EADSA instances are allowed.

The deprecated list is empty.

59

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8230/

Implementations are required to check that keys provided for signing or verification operations are correct for the
chosen algorithm, as required by RFC 8152, section 8.1 for ECDSA, RFC 8152, section 8.2 for EADSA, and RFC 8230
section 2 and section 4 for RSASSA-PSS.

These requirements are summarized here for convenience:

« ECDSA requires elliptic curve keys on the P-256, P-384, or P-521 elliptic curves.

o Although it is recommended to use P-256 keys with ES256, P-384 keys with ES384, and P-521 keys with
ES512, it is not required. Implementations shall accept keys on any of these curves for all ECDSA algorithm

choices.
« Ed25519 requires elliptic curve keys on the edwards25519 elliptic curve.
+ RSASSA-PSS requires RSA keys with a modulus length of at least 2048 bits.

Implementations shall refuse to generate or verify signatures with keys that are not correct for the algorithm choice.

Implementations may refuse RSA keys with modulus length greater than 16384 bits.

13.2.2. Use of COSE

The signature for the CBOR-encoded claim is produced by CBOR Object Signing and Encryption (COSE) as described in
RFC 8152, sections 4.2 and 4.4.

Payloads can either be present inside a COSE signature, or transported separately ("detached
NOTE content" as described in RFC 8152, section 4.1). In "detached content" mode, the signed data is
stored externally to the COSE_Signl_Tagged structure, and the payload field of the

COSE_Signl_Tagged structureis always nil.

Regardless of whether the payload will be present in or detached from the COSE_Signl_Tagged signature; the
contents of the payload field of Sig_structure in memory, when constructed to compute or verify a digital
signature, shall be populated with that external data as described by the particular use of digital signature in this

specification. The payload field of Sig_structure shall never be nil.

When computing or verifying the signature of a standard or update manifest, the payload field of the
Sig_structure will contain the contents of the claim JUMBF box, as described in Section 10.3.2.4, “Signing a
Claim” and Section 11.1, “Use of JUMBF”.

13.2.3. Computing the Signature

The signature is computed or verified as described in RFC 8152, section 4.4. The following additional requirements

apply to the construction of Sig_structure:

« The value for the context element shall be Signaturel except where a particular use of digital signatures in

this specification specifies using CounterSignature instead. Signature shall not be used.

« The value for the payload element will be specified by each use of digital signatures in this specification.

60

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/rfc/rfc8230.html#section-2
https://www.rfc-editor.org/rfc/rfc8230.html#section-2
https://www.rfc-editor.org/rfc/rfc8230.html#section-4
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

« The external_aad element shall be a bstr of length zero. External authenticated data shall not be used.

« The a'lg header specifying the signature algorithm shall be present in the body_protected element as defined
in RFC 8152, section 3.1.

The alg header is a standard COSE header, and therefore is always included in the protected
NOTE header map with the integer 1 as its label, as established in the IANA COSE Header Parameters
Registry. The literal string alg is never used as the label. The sign_protected element is

always omitted when using COSE_S1ign1.

All digital signatures in C2PA structures shall be a COSE_Signl_Tagged structure as defined in RFC 8152, section
4.2. COSE_Signl_Tagged contains a COSE_Sign1 structure. The following additional requirements apply to the
construction of COSE_Signl_Tagged:

« The same a'llg headerinthe Sig_structure above shall be presentin the protected header bucket.

« The value for the payload field and whether the payload is present in the signature or detached will be specified
by each use of digital signatures in this specification. When the payload is specified as detached, its value here
shall be nil. Conversely, when the payload is present in the signature, the binary contents of the payload are
stored in this field asa bstr.

COSE defines nil to be major type 7, value 22 in RFC 8152, section 1.3, and uses this value
NOTE exclusively for detached content. A byte array (major type 2) of length zero cannot be used to
indicate detached content.

13.2.4. Adding a claimed time of signing

A claim generator may also wish to establish a "claimed time of signing" by adding an iat protected header, whose
valueisa NumericDate. If present, it shall represent the time at which the signature was generated.

A Numer-icDate is a CBOR numeric date (as described in RFC 8949, section 3.4.2) but with the

NOTE

leading tag 1 (epoch-based date/time) omitted. It is not used anywhere else in this specification.

This recommendation is based on in-process updates to JAJES for providing a non-trusted time-
NOTE stamp that is not used for certificate validity checking, but could be used in a user experience. It

could be useful in scenarios where the claim generator is not able to access a trusted time source,
but still wants to provide a time of signing.

13.2.5. Signature Validation

When producing a signature, if the claim generator can also act as a validator, the claim generator should validate
that the signing credential is acceptable according to Chapter 14, Trust Model and produce a warning if it is not. The
claim generator may still allow signing with that credential if so desired. This may be desirable if it is known that the
local claim generator’s validator has a different configuration than validators used by the expected audience of the
asset.

61

https://datatracker.ietf.org/doc/html/rfc8152
https://www.iana.org/assignments/cose/cose.xhtml#header-parameters
https://www.iana.org/assignments/cose/cose.xhtml#header-parameters
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8949
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf

13.2.6. Cryptographic validation

When verifying a signature, an in-memory Sig_structure is generated. Its body_protected field is populated
with the contents of the protected header bucket from the COSE_Signl_Tagged structure (RFC 8152, section
4.4). For the payload field, if the payload was specified as present in the signature, it is populated from the
payload field of the COSE_S-ignl_Tagged structure. If the payload was specified as detached, the payload field
of the COSE_Signl_Tagged structure will be nil. In this case, the contents of the payload field of
Sig_structure shall be populated from the same external source that was used in the generation of the signature.

These are defined in the places where the digital signature is used in this specification.

13.2.7. Inclusion of signer icons

A C2PA Manifest Consumer may wish to display an icon or logo for the signer. To locate such a graphic, it shall look
inside the embedded certificate for a logotype as defined in RFC 9399. If no logotype is present, the Manifest

Consumer may use icons or logos from other sources in an implementation-dependent manner.

62

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/rfc9399/

Chapter 14. Trust Model

NOTE In this section, "user" refers to human actors that are using C2PA-compliant validators in
consumption and authoring scenarios.

14.1. Overview

Trusts signer to Trusts issuer to
Signer secure their Credential identify signers Validator
Issuer 4
credentials
A A
L emmmee e . Trusts validator to !
i Trusts assertions are | ' check validity and |
e S e S S e - Consumer F--------—-=----=-————-—-— :
made by the signer ! i correctly identify
—————————— ' signers

Figure 12. C2PA Trust Model Diagram

Figure 12, “C2PA Trust Model Diagram” shows, in yellow, green and red, the three entities specified in the trust model,
which is concerned with trust in a signer’s identity. In dashed lines, below, is the consumer (who is not specified in the
trust model), who uses the identity of the signer, along with other trust signals, to decide whether the assertions

made about an asset are true.

14.2. Identity of Signers

Identity in the trust model is the means by which a cryptographic signing key (aka credential) is associated with the
signer for the basis of making trust decisions based on the claim signature or any structure (including, but not limited

to, assertions and claims) signed with that key.

The credential shall be listed in the COSE protected headers of the COSE_Sign1_Tagged structure used for digital
signatures in all C2PA manifests. Exactly one instance of an identity credential shall appear in the union of the
protected and unprotected headers. COSE_Signl_Tagged structures with no credentials, or two or more
credentials, shall be rejected. Repeating the same credential more than once, including separately in the protected

and unprotected headers, is also an instance of two or more credentials and shall be rejected.

NOTE Older versions of this specification also allowed the credential to appear in the COSE unprotected
headers.

How the credential is stored in the header value, how trust chains are constructed are specified, and additional

information can be found in Section 14.5, “X.509 Certificates”.

63

14.3. Validation states

14.3.1. General

A validator is a Manifest Consumer that will make some validation statements about that asset and its associated
active manifest. The process for retrieving these statements is described in the validation section. The actor
consuming the asset, usually through their user agent and its user interface, then has to interpret those statements to
arrive at a set of conclusions of their own about the provenance of the asset they are consuming. These conclusions
will be drawn from those statements and the contents of the asset itself.

14.3.2. Manifest States
Based on these statements, a C2PA Manifest may be one of the following:

« Well-Formed
« Valid

 Trusted

NOTE Any Trusted manifest is also Valid, and any Valid manifest is also Well-Formed.

14.3.3. Asset States

If a validator reports that the portions of the asset that are covered by content bindings have not been modified since
the active manifest was produced [Section 15.12, “Validate the Asset’s Content”], and its active manifest is either Valid

or Trusted, then the asset itself is a Valid asset.

14.3.4. Well-Formed Manifest
A C2PA Manifest is Well-Formed if validation determines that each of the following is true:

« The manifest’s contents abide by the normative requirements of this specification, that are validated via the

validation process.

+ Only those assertions allowed for the specific type of the manifest are present [Section 15.10.1, “Validate the

correct assertions for the type of manifest”].
« The assertions of the manifest meet all the requirements for assertions [Section 15.10.3, “Assertion Validation”].

« Any ingredients present in the manifest meet all the requirements for ingredients [Section 15.11, “Validate the

Ingredients™].

14.3.5. Valid Manifest

A C2PA Manifest is Valid if validation determines that each of the following is true:

64

« The manifest is Well-Formed [Section 14.3.4, “Well-Formed Manifest”].
« The manifest has not been modified since the manifest was signed [Section 13.2.6, “Cryptographic validation”].

+ The claim signature receives a success code of claimSignature.validated [Section 15.7, “Validate the

Signature”].

« Validation of the claim signature validity period receives the success code of
claimSignature.insideValidity [Section 15.8, “Validate the Time-Stamp”].

« The credential of the signer of the C2PA Manifest is not rejected with a failure code of
signingCredential.ocsp.revoked, or signingCredential.ocsp.unknown [Section 15.9,

“Validate the Credential Revocation Information”].

If a C2PA Manifest is Valid, then the manifest’s claim can be attributed to the claim generator which is identified by the

claim_generator_info field of the claim [Section 10.2.3, “Claim Generator Info”].

14.3.6. Trusted Manifest
A C2PA Manifest is Trusted if validation determines that each of the following is true:

« The manifest is Valid [Section 14.3.5, “Valid Manifest”].

+ The signing credential of the C2PA Manifest receives the success code of signingCredential.trusted
[Section 15.7, “Validate the Signature”].

14.4. Trust Lists

14.4.1. C2PA Signers
Avalidator shall maintain the following information for evaluating C2PA signers:

« Alist of accepted Extended Key Usage (EKU) values.
 For each accepted EKU value, a list of X.509 certificate trust anchors.

For the c2pa-kp-claimSigning (1.3.6.1.4.1.62558.2.1) EKU, the list of trust anchors shall include, but need not be
limited to, the signer trust anchors provided by C2PA (i.e., the C2PA Trust List).

NOTE Some of these lists can be empty.

In addition to the list of trust anchors for the c2pa-kp-claimSigning EKU provided in the C2PA Trust List, a
validator should allow a user to configure additional trust anchors for that EKU and/or for other EKUs (e.g., id-kp-
emailProtection (1.3.6.1.5.5.7.3.4) or id-kp-documentSigning (1.3.6.1.5.5.7.3.36)). A validator should
provide default options or offer lists maintained by external parties that the user may opt into to populate the
validator’s trust anchor store for C2PA signers.

NOTE Previous versions of this specification required the presence of id-kp-emailProtectionorid-

65

kp-documentSigning EKUs, so including at least one of those two EKUs in a signer’s certificate,

together with c2pa-kp-claimSigning, canimprove compatibility with older validators.

14.4.2. Time Stamping Authorities

A validator shall maintain a list of X.509 certificate trust anchors for Time Stamping Authorities (TSAs), which shall be
separate from the lists for C2PA signers. This list shall include, but need not be limited to, the Time Stamping
Authority trust anchors provided by the C2PA (i.e., the C2PA TSA Trust List).

NOTE This list can be empty.

In addition to the list of trust anchors provided in the C2PA TSA Trust List, a validator should allow a user to configure
additional TSA trust anchor stores, and should provide default options or offer lists maintained by external parties

that the user may opt into to populate the validator’s trust anchor store for Time Stamping Authorities.

14.4.3. Private Credential Storage

A validator may also allow the user to create and maintain a private credential store of signing credentials. This store
is intended as an "address book" of credentials they have chosen to trust based on an out-of-band relationship. If
present, the private credential store shall only apply to validating signed C2PA manifests, and shall not apply to
validating time-stamps. If present, the private credential store shall only allow trust in signer credentials directly;
entries in the private credential store cannot issue credentials and shall not be included as trust anchors during

validation.
Avalidator shall not be pre-configured with any entries in a private credential store.

A validator shall only add entries to a private credential store in response to a user request to trust the credential.
Similarly, a validator shall only remove entries from a private credential store in response to a user request to stop

trusting the credential.

14.5. X.509 Certificates

X.509 Certificates are stored as defined by RFC 9360 (CBOR Object Signing and Encryption (COSE): Header Parameters
for Carrying and Referencing X.509 Certificates). For convenience, the definition of x5cha-in is copied below.

This specification adds additional requirements beyond those of RFC 9360, which are listed
after the quoted text. In particular, this specification requires all intermediate certificate

IMPORTANT authorities' certificates of the signer’s certificate chain to be included in the x5cha+in header,
and requires claim generators to always place the x5chain header in the protected header
bucket.

x5chain: This header parameter contains an ordered array of X.509 certificates. The
certificates are to be ordered starting with the certificate containing the end-entity key

followed by the certificate that signed it, and so on. There is no requirement for the entire

66

https://datatracker.ietf.org/doc/html/rfc9360
https://datatracker.ietf.org/doc/html/rfc9360

chain to be present in the element if there is reason to believe that the relying party
already has, or can locate, the missing certificates. This means that the relying party is still
required to do path building but that a candidate path is proposed in this header

parameter.

The trust mechanism MUST process any certificates in this parameter as untrusted input.
The presence of a self-signed certificate in the parameter MUST NOT cause the update of
the set of trust anchors without some out-of-band confirmation. As the contents of this
header parameter are untrusted input, the header parameter can be in either the
protected or unprotected header bucket. Sending the header parameter in the
unprotected header bucket allows an intermediary to remove or add certificates.

The end-entity certificate MUST be integrity protected by COSE. This can, for example, be
done by sending the header parameter in the protected header, sending an 'x5chain’ in
the unprotected header combined with an 'x5t' in the protected header, or including the

end-entity certificate in the external_aad.

This header parameter allows for a single X.509 certificate or a chain of X.509 certificates

to be carried in the message.

« If asingle certificate is conveyed, it is placed in a CBOR byte string.

« If multiple certificates are conveyed, a CBOR array of byte strings is used, with each
certificate being in its own byte string.

The validator is only expected to have the certificates for its trust anchors. Therefore, when creating the x5cha-in
header as part of signing, the claim generator shall include the signer’s certificate and all intermediate certificate
authorities in the header’s value. The trust anchor’s certificate (also called the root certificate) should not be included.

The subjectPublicKeyInfo element of the first or only certificate will be the public key used to validate the
signature. The validity element of the tbsCertificate sequence provides the time validity period of the
certificate.

A previous version of this specification required claim generators to write the string label x5chain only to avoid the

unlikely possibility that the integer label 33 would not be standardized.

Integer label 33 has now been standardized, and this specification now adopts it as standard, and deprecates use of

the string label. Therefore:

+ Claim generators should use only the integer 33 as the label when inserting this header into a COSE signature.
Claim generators may continue to write the string label x5chain but this behaviour is now deprecated and claim

67

generators should be updated to use the integer label only. Claim generators shall place this header only in the
protected header bucket of the COSE signature as required above.

« Validators shall accept either the string x5chain or the integer 33 as the label for this header. If both labels are
present, validators shall use the header with the integer label 33 and ignore the header with the string x5chain
as the label. Validators shall accept the header from either the protected or unprotected bucket, to maintain
compatibility with previous versions of this specification. In compliance with Section 14.2, “Identity of Signers”, if
this header appears in both the protected and unprotected buckets with the same label, a validator shall reject
the claim signature as malformed due to the presence of multiple credentials.

14.5.1. Certificate Profiles

14.5.1.1. General Requirements

This section defines the requirements to validate that an X.509 certificate is acceptable as a signing credential as
described in Section 15.7, “Validate the Signature”.

All certificates shall fulfill the following requirements.
« The algorithmfield of the signatureAlgorithmfield shall be one of the following values:

ecdsa-with-SHA256
RFC 5758, section 3.2

ecdsa-with-SHA384
RFC 5758, section 3.2

ecdsa-with-SHA512
RFC 5758, section 3.2

sha256WithRSAEncryption
RFC 8017, appendix A.2.4

sha384WithRSAEncryption
RFC 8017, appendix A.2.4

sha512WithRSAEncryption
RFC 8017, appendix A.2.4

id-RSASSA-PSS
RFC 8017, appendix A.2.3

id-Ed25519
RFC 8410 section 3

68

https://datatracker.ietf.org/doc/html/rfc5758#section-3.2
https://datatracker.ietf.org/doc/html/rfc5758#section-3.2
https://datatracker.ietf.org/doc/html/rfc5758#section-3.2
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.4
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.4
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.4
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.3
https://datatracker.ietf.org/doc/html/rfc8410#section-3

+ If the algorithm field of the signatureAlgorithm field is id-RSASSA-PSS, the parameters field is of
type RSASSA-PSS-params. Its fields shall have the following requirements as defined in RFC 8017, appendix
A.2.3:

o The hashAlgorithmfield shall be present.

o The algorithm field of the hashAlgorithm field shall be one of the following values as defined in RFC
8017, appendix B.1:

= id-sha256.
= id-sha384.
= id-sha512.
o ThemaskGenAlgorithmfield shall be present.

o The algorithm field of the parameters field of the maskGenAlgorithm field shall be equal to the
algorithmfield of the hashAlgorithmfield.

o If the algorithm field of the algorithm field of the certificate’s subjectPublicKeyInfo is id-
ecPublicKey, the parameters field shall be one of the following named curves from RFC 5480, section
2.1.1.1:

o prime256v1.
o secp384rl.
o secp521rl.

« If the algorithm field of the algorithm field of the certificate’s subjectPublicKeyInfo is
rsaEncryption or id—-RSASSA-PSS, the modulus field of the parameters field shall have a length of at
least 2048 bits.

All certificates except those in the private credential store for X.509 certificates shall fulfil the following additional
requirements to be acceptable.
« Version shall be v3 as per RFC 5280, section 4.1.2.1.

« The issuerUniquelID and subjectUniquelID optional fields of the TBSCertificate sequence shall not
be present, as per RFC 5280, section 4.1.2.8.

+ The Basic Constraints extension shall follow RFC 5280, section 4.2.1.9. In particular, one of the following shall be

true:

o If the certified public key can be used to verify certificate signatures, the Basic Constraints extension shall be

present with the cA boolean asserted.

o If the certified public key cannot be used to verify certificate signatures, either the Basic Constraints extension
shall be absent or the cA boolean in the extension shall not be asserted and the keyCertS-gn bitin the key

usage extension shall not be asserted.

« The Authority Key Identifier extension shall be present in any certificate that is not self-signed, as per RFC 5280,
section4.2.1.1.

69

https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.3
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.3
https://datatracker.ietf.org/doc/html/rfc8017#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc5480#section-2.1.1.1
https://datatracker.ietf.org/doc/html/rfc5480#section-2.1.1.1
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

« As prescribed in RFC 5280, section 4.2.1.2, the Subject Key Identifier extension shall be present in any certificate

that acts as a CA. It should be present in end entity certificates.

+ As prescribed in RFC 5280, section 4.2.1.3, the Key Usage extension shall be present and should be marked as
critical. Certificates used to sign C2PA manifests shall assert the digitalSignature bit. The keyCertS-ign
bit shall only be asserted if the cA boolean is asserted in the Basic Constraints extension.

« The Extended Key Usage (EKU) extension shall be present and non-empty in any certificate where the Basic
Constraints extension is absent or the cA boolean is not asserted, as per RFC 5280, section 4.2.1.12. These are
commonly called "end entity" or "leaf" certificates.

o The anyExtendedKeyUsage EKU (2.5.29.37.0) shall not be present.

o A certificate that signs time-stamping countersignatures shall be valid for the id-kp-timeStamping
(1.3.6.1.5.5.7.3.8) purpose.

o A certificate that signs OCSP responses for certificates shall be valid for the id-kp-OCSPSigning
(1.3.6.1.5.5.7.3.9) purpose.

o If a certificate is valid for either id-kp-timeStamping or id-kp-0CSPS1igning, it shall be valid for
exactly one of those two purposes, and not valid for any other purpose.

o A certificate should not be valid for any other purposes outside of the purposes listed above, but the presence
of any EKUs not mentioned in this profile and not in the list of EKUs in the configuration store shall not cause

the certificate to be rejected.

14.5.1.2. Certificate Trust Chain

When validating a certificate as the signing credential, if the certificate is present in the private credential store for
X.509 certificates, the certificate is accepted. The private credential store is not consulted when validating time-

stamps.

If the certificate is not present in the private credential store, or the validator does not implement one, the trust chain
shall be built and validated according to the procedure in RFC 5280, section 6 for the particular purpose required
(signing, time-stamping, or OCSP signing) and for the appropriate trust anchor store for that purpose. Any failure of
that validation algorithm shall mean the chain shall be rejected. The private credential store is never included when
building certificate chains; certificates in the private credential store cannot act as CAs.

Only end entity certificates shall be used to sign C2PA Claims or time-stamps. A CA certificate shall not be used for
these purposes. Any CA certificate (where the cA boolean in the Basic Constraints extension is asserted) being used to
validate a signature on a C2PA Claim, time-stamp, or OCSP response shall be rejected with a failure code of

signingCredential.untrusted.

A validator shall ensure a signing certificate is authorized for the purpose for which it is being used, and reject
certificates used for an unauthorized purpose. A certificate is authorized for a particular purpose if the purpose’s EKU
Object Identifier (OID) is present in the Extended Key Usage extension of the certificate (RFC 5280, section 4.2.1.12).

When validating a certificate used to sign a C2PA Claim, the signing certificate shall have at least one of the EKUs for
which the validator has an associated list of trust anchors (see Section 14.4.1, “C2PA Signers”), and the validator shall

70

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

use only the trust anchors it associates with EKUs present in the certificate.

When validating a certificate chain used to sign a time-stamp, the signing certificate shall have the id-kp-
timeStamping (1.3.6.1.5.5.7.3.8) EKU.

When validating a certificate chain used to sign an OCSP response, the signing certificate shall have the id-kp-
OCSPSigning(1.3.6.1.5.5.7.3.9) EKU.

Except for certificates accepted through the private credential store for X.509 certificates, a validator shall verify a
certificate’s compliance with the Certificate Profile, and reject certificates that do not comply. This includes requiring
the presence of the Extended Key Usage extension, as well as a certificate being authorized for no more than one of

the three purposes listed in this section: C2PA signing, time-stamp signing, or OCSP response signing.

As described in the Certificate Profile, Certification Authority (CA) certificates which issue certificates are not required
to have an EKU extension, and usually will not. If one is present, it shall be ignored. This requirement only applies to
end entity certificates signing C2PA manifests, time-stamps, or OCSP responses. CA certificates shall not be used for
signing C2PA manifests, time-stamps, or OCSP responses.

14.5.2. Certificate Revocation

X.509 certificates support revocation status queries. A claim generator should use the Online Certificate Status
Protocol (OCSP, RFC 6960) and OCSP stapling (as originally conceptualized in RFC 6066, Section 8, but implemented
as described in this clause) to implement revocation. The claim generator shall not use Certificate Revocation Lists
(CRLs, RFC 5280). *°

Using CRLs requires downloading the entire list of revoked certificates for each Certificate Authority
NOTE encountered, which can be time-consuming. Although a CRL could be included in the same way an
OCSP response is stapled, the potential size of a CRL relative to an OCSP response also makes this

undesirable.

A conforming CA should include an AuthoritylnfoAccess (AIA) extension (RFC 5280, section 4.2.2.1) in their issued
certificates to provide access information for the OCSP service operated by the CA.

If the certificate has an AIA extension, revocation information shall be stored in an unprotected header of the
COSE_S+gn1 structure with the string label rVals and the value’s schema shall follow the rVa'ls rule in Example 3,
“CDDL for rVals™

Example 3. CDDL for rVals

; CBOR version of rVals and related structures based on JSON schema 1in
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010
101p.pdf section 5.3.5.2
rvals = {

"ocspVals": [1*x bstr]
}

71

https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

The above definition is a CBOR adaptation of a subset of the schema from JAdES, section 5.3.5.2,

NOTE
which only stores OCSP responses, and stores them as binary strings.

Before signing a claim, if a signer’s certificate has the AIA extension, a claim generator should query the OCSP service
indicated therein, capture the response, and store it in an element of the ocspVals array of the rVals header. The

claim generator should do the same for any intermediate CA certificates it includes with the claim signature.
Upon receipt of the claim, stapled OCSP responses shall be validated according to section 3.2 of RFC 6960.

The process for validating the revocation status of a certificate after a claim has been signed is described in more

detail in Validate the Credential Revocation Information.

72

https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://datatracker.ietf.org/doc/html/rfc6960

Chapter 15. Validation

15.1. Validation Process

15.1.1. Description

Validation of a C2PA Manifest is a multi-step process that involves validating the assertions, claim & associated claim
signature contained within it along with (for active manifests, only) validation of any associated hard bindings. This
validation process is performed by a validator, which is a hardware or software actor that implements the validation

algorithms described in this clause.

15.1.2. Phases of Validation
These phases, which are listed in no particular order, are described in the following clauses:

« Section 15.10, “Validate the Assertions”: Validation of the assertions.
« Section 15.11, “Validate the Ingredients”: Validation of the ingredients, if any.
« Section 15.8, “Validate the Time-Stamp”: Validation of the time-stamp.

« Section 15.9, “Validate the Credential Revocation Information”: Validation of the credential revocation

information.
« Section 15.7, “Validate the Signature”: Validation of the claim signature.

« Section 15.12, “Validate the Asset’s Content”: Validation of the content of the asset.

As described in Section 14.3, “Validation states”, a C2PA Manifest may be considered as Well-Formed, Valid or Trusted

based on the results of these steps.

15.1.3. Visual Representation

Figure 13, “Validating a Claim” is a visual representation of the process of validating a C2PA Manifest.

73

Image

Pixel Data : R A T {
[Poetbata | : Retrieve the claim from the active : 3 "assertions": ["c2pa/urn:c2pa:2/actions", "c2pa/

manifest B urn:c2pa:2/thumbnail", "c2pa/urn:c2pa:2:/ingredient",

"c2pa/urn:c2pa:2/data.hash"],
"redacted_assertions": ["c2pa/urn:c2pa:l/prec"],

Retrieve the claim signature and Dot | nsignaturen: mre2pA_sig2n
validate it, including any time-stamps : ¢
and revocation information

v

- v e
assertions HE

C2PA Manifest Store
Where this is stored will vary by host file format

HE Signed by: Editsuite
Inspect additional assertions and I Time: 2020-06-05T12:22:43-07:00

validate each Hash: 44.a4

9042 0le3 85cf

@ Claim Signature

95ca c85a 71f4

i
@ Claim Signature -

E : Assertion Store
e el v any parent E
. . . N Actions Thumbnail data.hash
ingredient manifests H
H {
{

Recursive processing of ingredients

' "edits": [
° Retrieve the claim signature for any H "desaturate", “hash”: ...
i i i H "brighten" 3
parent ingredient manifests and H]

validate it H :

° Inspect assertions in the ingredient
manifest and validate each

"assertions": ["c2pa/urn:c2pa:l/thumbnail",
""c2pa/urn:c2pa:l/actions",
"c2pa/urn:c2pa:2/data.hash"],
"signature": "#C2PA_sigl"

--- D ﬁ Claim Signature

Signed by: CameraCompany
Time: 2020-06-05T10:37:00-07:00
Hash: fa31...

Figure 13. Validating a Claim
If there are any discrepancies between the visual representation and the text, the text is considered

NOTE o
authoritative.

15.2. Returning Validation Results

15.2.1. General

The validation algorithm shall return a consolidated set of validation results for the all manifests in the asset’s C2PA
Manifest Store, including the active manifest as well all other manifests in the C2PA Manifest Store that are referenced

via ingredient assertions.

Validation results are expressed via a standard set of success, informational, and failure codes, as defined below in
Section 15.2.2, “Standard Status Codes”. Custom status codes are also permitted, when a claim generator has a need
to record some process-specific status information. Custom codes shall conform to the same syntax as entity-specific

namespaces, e.g. com. Litware.

When a claim generator adds an ingredient asset via an ingredient assertion, it shall act as a validator, and perform
the full validation algorithm described in this section on the ingredient. The claim generator shall record the

74

validation results of the ingredient, per the following CDDL Definition schema, as the value of the

validationResults field in the ingredient assertion.

CDDL for Validation Results

; Validation codes

; Success codes

S$status-code
S$Sstatus-code

"assertion.
"assertion.

accessible"
bmffHash.match"

Sstatus-code /= "assertion.boxesHash.match"
Sstatus-code /= "assertion.collectionHash.match"
$status-code /= "assertion.dataHash.match"
$status-code /= "assertion.hashedURI.match"
$status-code /= "claimSignature.insideValidity"
$status-code /= "claimSignature.validated"
$status-code /= "dingredient.claimSignature.validated"
$status-code /= "dingredient.manifest.validated"
$status-code /= "signingCredential.ocsp.notRevoked"
$status-code /= "signingCredential.trusted"
$status-code /= "timeStamp.trusted"

$status-code /= "timeStamp.validated"

; Informational codes

$status-code
S$Sstatus-code

"ingredient.unknownProvenance"
"manifest.unknownProvenance"

$status-code /= "signingCredential.ocsp.inaccessible"
$status-code /= "signingCredential.ocsp.skipped"

$status-code /= "timeOfSigning.insideValidity"

$status-code /= "timeOfSigning.outsideValidity"

$status-code /= "timeStamp.malformed"

$status-code /= "timeStamp.mismatch"

$status-code /= "timeStamp.outsideValidity"

$status-code /= "timeStamp.untrusted"

Sstatus-code /= "assertion.dataHash.additionalExclusionsPresent"

; Failure codes

status-code /= "algorithm.deprecate

$stat de /= "algorithm.d ted"

status-code /= "algorithm.unsupporte

$stat d "algorith ted"

status-code /= "assertion.action.ingredientMismatc
$stat d T & i ingredientMismatch"
status-code /= "assertion.action.malforme

Sstat d U ti ti 1f @™
status-code /= "assertion.action.redacte

Sstat d " ti ti dacted"
status-code /= "assertion.action.redactionMismatc
Sstat de /=" ti t1 dactionMsi tch"
status-code /= "assertion.bm ash.malforme

Sstat de /=" ti bmffHash 1f d"
Sstatus-code /= "assertion.bmffHash.mismatch"
status-code /= "assertion.boxesHash.mismatc

$stat de /=" ti b Hash.mi tch"
status-code /= "assertion.boxesHash.malforme

$stat d " ti b Hash 1f d"
status-code /= "assertion.boxesHash.unknownBox

Sstat d U ti b Hash k Box"
status-code /= "assertion.cloud-data.hardBindin
Sstat d U ti loud-data.hardBinding"
status-code /= "assertion.cloud-data.actions

Sstat d " ti loud-dat ti "
status-code /= "assertion.cloud-data.hardBindin
S$stat de /=" ti loud-data.hardBinding"
status-code /= "assertion.cloud-data.malforme

Sstat de /=" ti loud-dat 1f d"
status-code /= "assertion.collectionHash.incorrectFileCoun
S$stat d " ti 1llectionHash.1 tFileC t"
Sstatus-code /= "assertion.collectionHash.invalidURI"
status-code /= "assertion.collectionHash.malforme
$stat d " ti llectionHash 1f d"
Sstatus-code /= "assertion.collectionHash.mismatch"
S$status-code /= "assertion.dataHash.malformed"
Sstatus-code /= "assertion.dataHash.mismatch"
Sstatus-code /= "assertion.hashedURI.mismatch"
Sstatus-code /= "assertion.inaccessible"

S$Sstatus-code

"assertion

.ingredient.malformed"

75

https://datatracker.ietf.org/doc/html/rfc8610

S$status-code
S$status-code
Sstatus-code
Sstatus-code
$Sstatus-code
$status-code
$status-code
S$status-code
S$status-code
S$status-code
Sstatus-code
Sstatus-code
$Sstatus-code
$status-code

/= "assertion.json.invalid"

/= "assertion.missing"

/= "assertion.multipleHardBindings"

/= "assertion.notRedacted"

/= "assertion.outsideManifest"

/= "assertion.selfRedacted"

/= "assertion.undeclared"

/= "claim.cbor.invalid"

/= "claim.hardBindings.missing"

/= "claim.malformed"

/= "claim.missing"

/= "claim.multiple"

/= "claimSignature.missing"

/= "claimSignature.mismatch"
$status-code /= "claimSignature.outsideValidity"
$status-code /= "general.error" ; when nothing else applies
$status-code /= "hashedURI.missing"

Sstatus-code /= "hashedURI.mismatch"

$status-code /= "dingredient.claimSignature.missing"
$status-code /= "dingredient.claimSignature.mismatch"
$status-code /= "dingredient.manifest.missing"
$status-code /= "dingredient.manifest.mismatch"
$status-code /= "manifest.compressed.invalid"
Sstatus-code /= "manifest.inaccessible"
$status-code /= "manifest.multipleParents"
$status-code /= "manifest.timestamp.invalid"
$status-code /= "manifest.timestamp.wrongParents"
$status-code /= "manifest.update.invalid"
$status-code /= "manifest.update.wrongParents"
$status-code /= "signingCredential.invalid"
$status-code /= "signingCredential.ocsp.revoked"
$status-code /= "signingCredential.ocsp.unknown"
$status-code /= "sdigningCredential.untrusted"

; custom status codes
$status-code /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

status-map = {

"code": $status-code, ; A label-formatted string that describes the status

? "url": jumbf-uri-type, ; JUMBF URI reference to the JUMBF box to which this status
code applies

? "explanation": tstr .size (1..max-tstr-length), ; A human readable string explaining the
status

? "success": bool ; DEPRECATED. Does the code reflect success (true) or

failure (false)
}
status-codes-map = {

"success": [* $status-map], ; an array of validation success codes. May be
empty.

"informational": [* S$status-map], ; an array of validation informational codes. May
be empty.

"failure": [* $status-map] ; an array of validation failure codes. May be
empty.

}
; Objects containing validation results for a manifest and its ingredients

validation-results-map = {

? "activeManifest": $status-codes-map, ; Validation status codes for the dingredient's
active manifest. Present if ingredient is a C2PA asset. Not present if the ingredient is not
a C2PA asset.

? "ingredientDeltas": [* $ingredient-delta-validation-result-map] ; List of any

76

changes/deltas between the current and previous validation results for each dingredient's
manifest. Present if the the ingredient is a C2PA asset.

}

ingredient-delta-validation-result-map = {

"ingredientAssertionURI": jumbf-uri-type, ; JUMBF URI reference to the ingredient
assertion

"validationDeltas": S$status-codes-map ; Validation results for the dingredient's
active manifest

}

15.2.2. Standard Status Codes

15.2.2.1. Success codes

Table 2. Validation success codes
Value Meaning url Usage

assertion.accessible A non-embedded (remote) assertion was C2PA Assertion

accessible at the time of validation.

assertion.bmffHash.match Hash of a box-based asset matches the hash C2PA Assertion

declared in the BMFF hash assertion.

assertion.boxesHash.match Hash of a box-based asset matches the hash C2PA Assertion

declared in the general box hash assertion.

ﬁsserti on.collectionHash.matc Hashes of all the assets contained in a collection C2PA Assertion
matches the hashes declared in the collection

data hash assertion.

assertion.dataHash.match Hash of a byte range of the asset matchesthe =~ C2PA Assertion

hash declared in the data hash assertion.

assertion.hashedURI.match The hash of the referenced assertion matches C2PA Assertion
the corresponding hash in the assertion’s
hashed URI in the claim.

ﬁssert-i on.multiAssetHash.matc The hash of one part of a multi-asset hash C2PA Assertion
assertion matches the corresponding hash in

the assertion’s multi-asset-hash-map.

claimSignature.insideValidity theclaim signature referenced in the claim was C2PA Claim Signature

created within the validity period of the signing Box

credential
claimSignature.validated The claim signature referenced in the claim C2PA Claim Signature
validated. Box
ingredient.claimSignature.val The hash ofthe ingredient’s C2PA Claim C2PA Assertion

idated
raate Signature box was successfully validated.

Value

ingredient.manifest.validated

signingCredential.ocsp.notRev
oked

signingCredential.trusted

timeStamp.trusted

timeStamp.validated

15.2.2.2. Informational codes

Table 3. Validation informational codes

Value

algorithm.deprecated

ingredient.unknownProvenance

signingCredential.ocsp.inacce
ssible

signingCredential.ocsp.skippe
d

timeOfSigning.insideValidity

timeOfSigning.outsideValidity

timeStamp.malformed

78

Meaning

The hash of the ingredient’s C2PA Manifest box
was successfully validated.

The signing credential was not revoked at the
time of signing.

The signing credential is trusted

The time-stamp credential is listed on the
validator’s list of trust anchors for time stamp
authorities.

The time-stamp is well-formed, has a message
imprint that matches the Claim Signature, and
was created within the validity period of the
time-stamp credential.

Meaning

The algorithm has been deprecated.

The ingredient does not have a C2PA Manifest.

The validator attempted to perform an online
OCSP check, but did not receive a response.

The validator chose not to perform an online
OCSP check.

The claimed time of signing (in the iat header
of the signature) is within the validity period of
the signer’s certificate chain and before the time
in any corresponding trusted time-stamp.

The claimed time of signing (in the iat header
of the signature) is outside the validity period of
the signer’s certificate chain or later than the

time in a corresponding trusted time-stamp.

The time-stamp response included in the claim
signature header is not properly formed, as per
RFC 3161

url Usage

C2PA Assertion

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

url Usage

C2PA Claim Box or
C2PA Assertion

C2PA Assertion

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

Value

timeStamp.

timeStamp.

timeStamp.

mismatch

outsideVal-idity

untrusted

15.2.2.3. Failure codes

Table 4. Validation failure codes

Value

algorithm.

assertion
smatch

assertion.

assertion

assertion
match

assertion.

assertion.

assertion.

assertion.

assertion.

X

assertion.

assertion.

unsupported

.action.ingredientMi

action.malformed

.action.redacted

.action.redactionMis

bmffHash.malformed

bmffHash.mismatch

boxesHash.malformed

boxesHash.mismatch

boxesHash.unknownBo

cloud-data.actions

cloud-

data.hardBinding

Meaning

The time-stamp does not correspond to the
contents of the claim.

The signed time-stamp attribute in the
signature was created outside the validity
period of the TSA’s certificate.

The time-stamp credential is not listed on the
validator’s TSA trust lists.

Meaning

The algorithm is unspecified or unsupported.

An action that requires an associated ingredient
either does not have one or the one specified
cannot be located

An actions assertion is malformed.

An actions assertion was redacted when the
claim was created.

An action that requires an associated redaction
either does not have one or the one specified
cannot be located

A BMFF hash assertion is malformed.

The hash of a box-based asset does not match

the hash declared in a BMFF hash assertion.
The general box hash assertion is malformed.

The hash of a general box-like asset format does
not match the hash declared in a general box
hash assertion.

A box other than those expected was found
An update manifest contains a cloud data
assertion referencing an actions assertion.

A hard binding assertion is in a cloud data
assertion.

url Usage

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

url Usage

C2PA Claim Box or
C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

Value

assertion.

cloud-

data.malformed

assertion.

assertion.

cbor.invalid

collectionHash.inco

rrectFileCount

assertion.

1idURI

assertion.

ormed

assertion.

atch

assertion.

assertion.

assertion.

assertion.

assertion.

assertion.

d

assertion.

assertion.

assertion.

ormed

assertion.

ingPart

assertion.

atch

assertion.

S

80

collectionHash.inva

collectionHash.malf

collectionHash.mism

dataHash.malformed

dataHash.mismatch

dataHash.redacted

hashedURI.mismatch

inaccessible

ingredient.malforme

json.invalid

missing

multiAssetHash.malf

multiAssetHash.miss

multiAssetHash.mism

multipleHardBinding

Meaning

The cloud-data assertion was incomplete

The cbor of an assertion is not valid

An asset that was listed in the collection data
hash assertion is missing from the collection.

A URI of an asset in the collection data hash
assertion contains the file part '..' or '.".

The collection hash assertion was incomplete

A hash of an asset in the collection does not
match hash declared in the collection data hash
assertion.

A data hash assertion is malformed.

The hash of a byte range of the asset does not
match the hash declared in the data hash

assertion.

A hard binding assertion was redacted when the
claim was created.

The hash of the the referenced assertion in the
manifest does not match the corresponding
hash in the assertion’s hashed URI in the claim.

A non-embedded (remote) assertion was

inaccessible at the time of validation.

The ingredient assertion was incomplete

The JSON(-LD) of an assertion is not valid

An assertion listed in the manifest’s claim is

missing from the asset’s manifest.

A multi-asset hash assertion is malformed.

Arequired part of the multi-part asset cannot be
located.

The hash of a part of a multi-part asset does not
match the hash declared in the mutli-asset hash
assertion.

The manifest has more than one hard binding

assertion.

url Usage

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Claim Box

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion Store

Box

Value

assertion.

assertion.

assertion.

assertion.

assertion.

notRedacted

outsideManifest

selfRedacted

timestamp.malformed

undeclared

claim.cbor.invalid

claim.hardBindings.missing

claim.malformed

claim.missing

claim.multiple

claimSignature.missing

claimSignature.mismatch

claimSignature.outsideValidit

y

general.error

hashedURI.

hashedURI.

ingredient.claimSignature.mis

sing

missing

mismatch

Meaning

An assertion was declared as redacted in the
claim but is still present in the manifest.

An assertion listed in the claim is not in the

same C2PA Manifest as the claim

An assertion was declared as redacted by its
own claim.

The time-stamp assertion is malformed.

An assertion was found in the manifest that was

not explicitly declared in the claim.
The cbor of the claim is not valid.
No hard bindings are present.

The data/fields of the referenced claim in the

manifest are not correct.

The referenced claim in the manifest cannot be

found.

More than one claim box is present in the

manifest.

The claim signature referenced in the claim

cannot be found in its manifest.

The claim signature referenced in the claim
failed to validate.

The claim signature referenced in the claim was

created outside the validity period of the signing

credential.

Avalue to be used when there was an error not

specifically listed here.

The data pointed to by a hashed_uri cannot
be located

The hash of a given hashed_uri does not
match the corresponding hash of the

destination URI’s data

The referenced ingredient C2PA Claim Signature

was not found.

url Usage

C2PA Assertion

C2PA Claim Box

C2PA Claim Box

C2PA Assertion

C2PA Assertion

C2PA Claim Box
C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Signature

Box

C2PA Claim Signature
Box

C2PA Claim Signature
Box

C2PA Claim Box or
C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Assertion

81

Value

ingredient.claimSignature.mis

match

ingredient.manifest.missing

ingredient.manifest.mismatch

manifest.

manifest.

manifest

manifest

manifest.

ts

manifest.

manifest.

signingCredential.

signingCredential.

d

signingCredential.

n

signingCredential.

82

compressed.invalid

inaccessible

.multipleParents

.timestamp.invalid

timestamp.wrongParen

update.invalid

update.wrongParents

invalid

ocsp.revoke

ocsp.unknow

untrusted

Meaning

The hash of an embedded C2PA Manifest’s C2PA

Claim Signature does not match the hash
declared in the hashed_uri value of the
claimSignature field in the ingredient

assertion.

The referenced ingredient C2PA Manifest was

not found.

The hash of an embedded C2PA Manifest does
not match the hash declared in the
hashed_uri value of the activeManifest

field in the ingredient assertion.
The compressed manifest was not valid.

A non-embedded (remote) manifest was
inaccessible at the time of validation.

The manifest has more than one ingredient

whose relationshipisparentOf.

The manifest is a time-stamp manifest, but it
contains a disallowed (non-ingredient)
assertion.

The manifest is an time-stamp manifest, but it
contains either zero or multiple parentOf

ingredients.

The manifest is an update manifest, but it
contains a disallowed assertion, such as a hard

binding or actions assertions.

The manifest is an update manifest, but it
contains either zero or multiple parentOf

ingredients.

The signing credential is not valid for signing.

The OCSP response indicates that the signing
credential has been revoked by the issuer.

The OCSP response contains an unknown
status for the signing credential

The signing credential is not listed on any of the

validator’s applicable trust lists.

url Usage

C2PA Assertion

C2PA Assertion

C2PA Assertion

C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Box

C2PA Claim Signature

Box

C2PA Claim Signature

Box

C2PA Claim Signature

Box

C2PA Claim Signature

Box

15.3. Displaying Manifest Information

Manifest Consumers should not display data from manifests which are not Valid nor from assets which are not Valid. If
the Manifest Consumer chooses to display such data, it shall include as part of the display:

« awarning about the lack of validity,

« a warning that the data shall not be attributed to the manifest’s signer, and in the case of an ingredient manifest,

additional not to the asset’s manifest’s signer.

In authoring scenarios, it is desirable to more prominently raise warnings so that a creator can make
NOTE an informed decision about how to proceed with an asset that is not Valid or that has a flawed

provenance history .

15.4. Determining the hashing algorithm

15.4.1. For Hashed URIs

Various parts of the C2PA Manifest utilize a hashed_ur1 structure for encapsulating a URI, its hash and (optionally)
the algorithm used to compute the hash. If there is an alg field in the hashed_ur1 structure, it shall be used as the
hashing algorithm. If the a'lg field is not present in the hashed_uri structure, the hash algorithm shall be
determined by evaluating the nearest enclosing structure that contains an a'lg field. If no a'lg field is found in any of
these locations, the value of the a'lg field in the claim shall be used as the hash algorithm. If no alg field is present in

any of these locations, the claim shall be rejected with a failure code of algorithm.unsupported.

15.4.2. For Hashed Ext URIs

Some parts of a C2PA Manifest utilize a hashed_ext_uri structure for encapsulating an external URI, its hash and
the algorithm used to compute the hash. If there is an alg field in the hashed_ext_uri structure, it shall be used
as the hashing algorithm. If the alg field is not present in the hashed_ext_uri structure, the failure code of

algorithm.unsupported shall be used.

NOTE The alg field is mandatory in hashed_ext_ur1, so no recursive procedure to determine the hash
algorithm is necessary.

15.4.3. Algorithm validation

Once the hashing algorithm is determined, it shall be compared to the values in the allowed list or the deprecated list
in Section 13.1, “Hashing”. If it is not present in either list, the claim shall be rejected with a failure code of
algorithm.unsupported. If the algorithm is present in the deprecated list, the claim shall be issued an

informational code of algorithm.deprecated.

83

15.5. Locating the Active Manifest

15.5.1. General

The last C2PA Manifest superbox in the C2PA Manifest Store superbox shall be considered the active manifest, but

locating the C2PA Manifest Store may involve looking in a number of possible locations.

15.5.2. Embedded

15.5.2.1. General

The C2PA Manifest Store shall be located by the validator embedded inside the asset at the standard locations for
embedding manifests. However, if an asset was retrieved via an HTTP connection, a validator may look for a Link

header, as described in the Link Header clause below, to determine if a C2PA Manifest Store is present.

Checking the Link header, if present, allows a validator to determine if a C2PA Manifest Store is
NOTE present without having to download the entire asset. This is useful for assets that are large or that

are streamed.

If there are multiple C2PA Manifest Stores present in an asset, they shall all be considered as invalid and the validation
should treat this as if no manifests were located. In the case where this asset is being added as an ingredient, none of
these embedded C2PA Manifests shall be included in the ingredient assertion.

15.5.2.2. Special Considerations for PDF

PDF files support a technology called "incremental update", where information is appended to the end of the
document instead of modifying the original. This requires that PDF files support multiple C2PA Manifest Stores -

though there shall only be one per update section.

If there are multiple C2PA Manifest Stores present in a single update section, they shall all be considered as invalid
and the validation should treat this as if no manifests were located. However, any C2PA Manifest Stores present in

early updates of the PDF or of the original PDF, shall still be considered valid and processed accordingly.

15.5.3. By Reference or URI

15.5.3.1. By Reference

If there is no embedded C2PA Manifest Store, the following attempts should be made to locate one at a remote

location.

« If the asset was retrieved via an HTTP connection, the Link Header clause below describes how to find a manifest

via the Link header.

« If the asset has any XMP in the standard asset locations (i.e., outside the C2PA Manifest) and that XMP contains a
dcterms:provenance key, the provided URI should be used to locate the active manifest.

84

« If the asset is a font with a C2PA table and its activeManifestUrilLength is non-zero, then the indicated URI

should be used to locate the active manifest.

« If no C2PA Manifest Store has been located, the validator should look for files at the same path or URI, but with a
filename extension of . c2pa. If the C2PA Manifest Store is not found, a validator may look in whatever additional
places it deems most appropriate to locate it. For example, a child folder of a file system.

NOTE A validator is not restricted to only the above locations, it can choose to look in additional locations
as well.

If a manifest was documented to exist in a remote location, but is not present there, or the location is not currently
available (such as in an offline scenario), the manifest.inaccessible error code shall be used to report the
situation.

Information about the IANA media type for a C2PA Manifest Store can be found in the external manifests section.

15.5.3.2. By Link header

If the asset was retrieved via an HTTP connection, the validator should look in the header of the HTTP response for a
Link header, as defined in RFC 8288, containing a parameter of rel=c2pa-manifest. If present, a C2PA Manifest
Store can be retrieved from that URI reference. The URI will be a standard http or https URI, such as
https://c2pa.org/image.c2pa.

Itis also possible to use the link relation to refer to the C2PA Manifest Store that is embedded inside an asset through
the use of a JUMBF URI fragment. The URI would include a JUMBF URI fragment, to the C2PA Manifest Store superbox
https://c2pa.org/image.jpg#jumbf=c2pa. References to specific C2PA Manifests within the C2PA Manifest Store are not
permitted and the validator shall ignore any childlabel portion of the JUMBF URI fragment.

HTTP refers to the Hypertext Transfer Protocol defined in RFC 7230, not the specific URL scheme
http://.

NOTE

15.5.4. Decompression

As described previously, both standard and update manifests can be compressed. When a compressed manifest is
encountered, a validator shall decompress it before proceeding with the standard validation process. If the data
contained in the brob box of a compressed manifest is not either a standard or update manifest or if the
decompression fails, the validator shall reject the manifest with a failure code of
manifest.compressed.invalid.

15.5.5. Validating a Match
Avalidator may wish to validate that the located C2PA Manifest Store is indeed the one associated with asset.

If the C2PA Manifest Store was located then the hard binding assertion present in its active manifest shall be used to
validate that it is the matching manifest and whether the asset has been modified without manifest updates. If the

hard binding does not match, it is unknown if that is because of (a) modification of the asset or (b) the wrong C2PA

85

https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc7230

Manifest Store was located. Accordingly, the validator shall treat this as a non-matching hard binding and reject the
manifest with a failure code of assertion.dataHash.mismatch if a data hash assertion is used,
assertion.boxesHash.mismatch if a general box hash assertion is used,
assertion.collectionHash.mismatch if a collection data hash assertion is used, or
assertion.bmffHash.mismatch if a BMFF hash assertion is used.

15.6. Locating and Validating the Claim

15.6.1. Locating

Once the manifest to be validated has been located (hereafter referred to as the "current manifest"), the claim is
found by locating, within the current manifest, the JUMBF Superbox with a label of c2pa.claim.v2 (or
c2pa.claim for files with older claim structures) and a JUMBF type UUID of 6332636C-0011-0010-8000-
OOAAOO389B71 (c2cl). Note that the JUMBF type UUID is the same for both the new (with c2pa.claim.v2 label)
and old (with c2pa.claim label) claim formats. There shall only be one such box in the current manifest. If more

than one is located, the C2PA Manifest shall be rejected with a failure code of claim.multiple.

15.6.2. Validating

If the content of the claim is not well-formed CBOR, the claim shall be rejected with a failure code of

claim.cbor.invalid.
NOTE Well-formed CBOR is defined in RFC 8949, Appendix C.

For a "c2pa.claim.v2", the following fields are expected to be present in the CBOR object. If any are absent, then the

claim shall be rejected with a failure code of claim.malformed.

« instancelD
« signature
« created_assertions

« claim_generator_info

If the claim_generator_info field does not contain a name field, the claim shall be rejected with a failure code

of claim.malformed.

If there is an [con field in the generator-info-map referenced by the claim_generator_info field of the
claim-map or claim-map-v2, then its value shall be validated as described in Section 15.10.3.3, “Validation of

References”.

15.7. Validate the Signature

Retrieve the URI reference for the signature from the value of the claim’s signature field and resolve the URI

86

https://datatracker.ietf.org/doc/html/rfc8949

reference to obtain the COSE signature. The signature shall be embedded in the same manifest as described in
Section 11.1.4, “C2PA Box details”. If the signature URI does not refer to a location within the same C2PA Manifest box
(a self#jumbf location), the claim shall be rejected. If no such field is present or the URI cannot be resolved, then
the claim shall be rejected with a failure code of claimSignature.missing.

If the signature and the claim are not contained in the same C2PA Manifest, that C2PA Manifest shall not be
considered valid.

For all types of C2PA Manifests, the validation of the credential used in the signature shall be performed according to
Chapter 14, Trust Model.

If the credential is not acceptable per the requirements of the credential’s type, then the claim shall be rejected with a
failure code of signingCredential.invalid. If the signature algorithm is not on the allowed or deprecated list
in Section 13.2, “Digital Signatures”, then the claim shall be rejected with a failure code of
algorithm.unsupported.

It is then necessary to verify a chain of trust from the credential to an entry in one of the applicable trust anchor lists. If
this chain of trust cannot be verified, the claim shall be rejected with a failure code of
signingCredential.untrusted; otherwise, the claim signature shall be assigned a success code of
signingCredential.trusted.

If the claim has not yet been rejected, validation shall proceed according to the specified procedure in Section 13.2,
“Digital Signatures”. If validation of the signature fails, then the claim shall be rejected with a failure code of
claimSignature.mismatch. Otherwise, the claim signature shall be assigned a success code of
claimSignature.validated.

For the remainder of this chapter, headers refer to the union of the set of protected and unprotected header
parameters in the COSE signature. Unless otherwise specified in Section 13.2, “Digital Signatures” or Section 14.5,
“X.509 Certificates”, a header may appear in either bucket. COSE headers are described in RFC 8152, section 3.

15.8. Validate the Time-Stamp

15.8.1. Obtaining the TimeStampToken

15.8.1.1. Embedded in the Claim Signature

If either the sigTst or sigTst2 header is present, then the tstTokens array is expected to contain a single
tstToken. If the header contains more than one tstToken, the validator shall issue a timestamp.malformed
informational code and ignore the time-stamps.

Avalidator that supports s1igTst shall perform the following procedures to validate the time-stamp response:

+ Retrieve the val property from the tstToken, which shall be an RFC3161-compliant TimeStampResp (time-

stamp response).

87

https://datatracker.ietf.org/doc/html/rfc8152

» Check the value of the status field PKIStatusInfo, which is the value of the status field of
TimeStampResp.

o If it contains any value other than 0 (granted) or 1 (grantedWithMods), the validator shall issue a

timeStamp.malformed informational code and ignore that time-stamp.

o If it is either 0 (granted) or 1 (grantedWithMods), continue with the rest of the time-stamp validation

process as described below.

« Retrieve the value of the timeStampToken field of the TimeStampResp for use in the remainder of the

validation process.

A validator for sigTst2 shall retrieve the va'l property from the tstToken, which shall be an RFC3161-compliant
timeStampToken (TimeStampToken, TST).

15.8.1.2. Referenced by a time-stamp assertion

If a validator has already located a TimeStampTokenina sigTst or sigTst2 header, that passes validation (as per
Section 15.8.2, “Validating the TimeStampToken”), then it shall skip this step. When no such header exists or the

TimeStampToken located there did not pass validation, this step shall be followed.

If a validator had previously located any time-stamp assertions, which were then maintained in a mapping of C2PA
Manifest identifiers to TimeStampTokens, then the validator shall check if the current C2PA Manifest’s identifier is
present in the mapping. If it is, the validator shall use the TimeStampToken associated with the identifier in the
mapping for the TimeStampToken in the validation process described in Section 15.8.2, “Validating the
TimeStampToken”. If more than one TimeStampToken for that identifier is found in the mapping, the validator shall
try each one until one successfully passes validation (and then should ignore the others). If the identifier does not
appear in the mapping, no error is raised, as it simply means that there is no TimeStampToken associated with this

C2PA Manifest in the current context.

15.8.2. Validating the TimeStampToken
All validators shall continue the process as follows:

« If the signature algorithm in the timeStampToken is not on the allowed or deprecated list in Section 13.2,
“Digital Signatures”, then the validator shall issue a timestamp.untrusted informational code and ignore

the time-stamp.

« Validate the signature in the timeStampToken, as described in RFC 2630, Section 5.6. If the signature is not
valid, then the validator shall issue a timestamp.mismatch informational code and ignore the time-stamp.

o If the timeStampToken does not contain a messageImprint field, the validator shall issue a

timestamp.malformed informational code and ignore the time-stamp.

« If the message imprint hash algorithm is not on the allowed or deprecated list in Section 13.1, “Hashing”, then the

validator shallissue a timestamp.untrusted informational code and ignore the time-stamp.

« Validate that the value of the messageImprint field (in the timeStampToken), matches either the claim (v1,

88

http://datatracker.ietf.org/doc/html/rfc2630

sigTst) or COSE_S1ignl_Tagged structure’s signature field (v2, sigTst2) of the C2PA Manifest being
validated, as described in Section 10.3.2.5.2, “Choosing the Payload”. If the values do not match, the validator

shallissue a timestamp.mismatch informational code and ignore the time-stamp.

« Validate that the certificates field of the timeStampToken is present, the TSA’s certificate can be found in
the provided set of certificates in this field, and it is possible to build a trust chain from the TSA’s certificate to an
entry in C2PA TSA Trust List (or other list of trust anchors present in the validator for this purpose). If the
certificate cannot be located or a trust chain cannot be constructed, the validator shall issue a

timestamp.untrusted informational code and ignore the time-stamp.

« Validate that the attested time, as found in the genTime field (in the timeStampToken), falls within the
validity period of the TSA’s signing certificate and all CA certificates up to the trust anchor. If it does not, the

validator shallissue a timestamp.outsideValidity informational code and ignore the time-stamp.

If the time-stamp validation does not stop or fail due to any of the above conditions, then the validator shall issue

the success codes of timeStamp.trustedand timeStamp.validated.

If the validator issued both timeStamp.trusted and timeStamp.validated success codes, then the
validator shall validate that the time attested by the Time Stamp Authority (TSA), as found in the genT-ime field
(in the timeStampToken), falls within the validity period of the claim signing certificate and all CA certificates
up to the trust anchor. If it does not, the validator shall reject the claim with a

claimSignature.outsideValidity failure code.

Time-stamps remain valid even after the signing credential of the time-stamp authority expires, so
NOTE long as the attested time falls within the time-stamp authority’s certificate’s validity period. This is a

special type of trust extended only to time-stamp authorities.

At time of validation, when a time-stamp is present, trusted, and validated, validators shall use the attested time, and
not the current time, when determining the time validity of the signing certificate and the time-stamp authority’s

certificate.

NOTE This document does not require that the revocation status of a Time Stamp Authority’s certificate be
captured at signing time nor validated at validation time.

If neither the sigTst northe sigTst2 headers are present, or if at least one of them is present but their time-stamp
token does not satisfy the above requirements, then the C2PA Manifest is valid if the current time at validation is
within the validity period of the signer’s certificate and all CA certificates up to the trust anchor. If it is, the validator
shall return a success code of claimSignature.insideValidity. If it is not, the C2PA Manifest shall be

rejected with a failure code of claimSignature.outsideValidity.

15.8.3. Validating the "claimed time of signing"

Avalidator may choose to validate the "claimed time of signing" as attested by the value present in the iat protected
header. If the 1at header is present, the validator may validate that the attested time falls within the validity period
of the signer’s certificate and all CA certificates up to the trust anchor, and not later than the time attested by any
associated trusted time-stamp. If the validator does the validation of this value, and it falls inside the validity period,

89

the validator shall return the timeOfSigning.insideValidity informational code, but if it falls outside the

validity period, then the validator shall return the timeOfSigning.outsideValidity informational code.

15.9. Validate the Credential Revocation Information

The validator shall attempt to discover the revocation status of the signer’s certificate and all CA certificates that are

part of the trust chain.

For CA certificates, the validator should determine revocation status as indicated in the Authority Information Access
(AIA) extension as described in RFC 5280, section 4.2.2.1. The validator should make use of relevant OCSP responses
included in the C2PA Manifest if the AIA extension indicates that OCSP is available.

If the validator determines that a CA certificate was revoked at the time indicated in a trusted time-stamp, or at the
current time if no trusted time-stamp is present, then the claim signature shall be rejected with a failure status of

signingCredential.untrusted.
For the signer’s certificate, the validator shall use the following process.

« If a certificate does not support revocation status, or the certificate issuer did not provide a method to query its
revocation status, the validator shall treat the credential as not revoked.

« If the claim generator "stapled" OCSP responses in the rVals header of the COSE_S1ign1l structure, the
validator shall decode and validate the stapled OCSP responses as described in Section 15.9.1, “Determining

revocation through OCSP responses in the C2PA Manifest Store”.

« If subsequent claim generators added certificate status assertions in other C2PA Manifests in the C2PA Manifest
Store, the validator shall use those OCSP response(s) in the validation process described in Section 15.9.1,
“Determining revocation through OCSP responses in the C2PA Manifest Store”. If more than one OCSP response
for the certificate is found, the validator shall try each one until one successfully passes validation (and then

should ignore the others).

If no revocation information was found in the C2PA Manifest Store, and the validator is online, and the validator
desires to verify the revocation status for the certificate, then the validator shall attempt to determine the revocation
status of the certificate by querying the OCSP responder as described in Section 15.9.2, “Determining revocation from

online OCSP response”.

15.9.1. Determining revocation through OCSP responses in the C2PA Manifest Store

A validator shall decode OCSP responses per the requirements of RFC 6960, in particular requirements 1 through 4 of
section 3.2. If an OCSP response is accepted, and if all of the following requirements are met, then this establishes
that the relevant certificate was not revoked at the time of signing.

+ The claim signature has an attested time provided by a valid signed time-stamp.

« There exists a SingleResponse in the responses array of the thsResponseData field of the OCSP

response such that all of the following conditions hold:

90

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960

o The current time is no earlier than thisUpdate.
o The attested time from the time-stamp:
= is earlier than thisUpdate, or
= falls within the (thisUpdate,nextUpdate) interval,if nextUpdate is present, or

= falls within the (thisUpdate,producedAt + 24 hours) interval where producedAt is the field
in the containing ResponseData, if nextUpdate is not present.

o The certStatus field of the SingleResponseis good, or revoked but with a revocationReason of
removeFromCRL.

The removeFromCRL is unique amongst the values of revocationReason because it is
equivalent to a good response. Despite being a type of revoked response, this response

NOTE indicates the certificate had temporarily been put "on hold" (the certificateHold
reason) previously due to some concern about its integrity, but that the concern has been
resolved and the issuer is stating the certificate remains trustworthy (see RFC 5280).

« The OCSP signer of the response is an "authorized responder" as defined by RFC 6960, section 4.2.2.2.

Validators shall check the revocationReason of any revoked response to disambiguate the removedFromCRL
case from an actual revocation.

If the above conditions are met for any OCSP response in the C2PA Manifest Store, then the certificate shall be
considered not revoked at the time of signing, and the validator shall issue a
signingCredential.ocsp.notRevoked success code.

Otherwise, an OCSP response in the C2PA Manifest Store meets all of the above conditions except that the
certStatus field is revoked, the certificate shall be considered revoked at the time of signing and the claim shall

be rejected witha signingCredential.ocsp.revoked failure code.

15.9.2. Determining revocation from online OCSP response

If, for a given certificate, no OCSP response in the C2PA Manifest Store satisfies the conditions in Section 15.9.1,
“Determining revocation through OCSP responses in the C2PA Manifest Store”, or if the claim signature does not have
a time-stamp, the validator may choose to query the OCSP responder, per RFC 6960, with the responder
accesslLocation found via RFC 6960, section 3.1.

NOTE Querying the credential status method can reveal to an observer the identity of the asset being
validated, and so this query is optional.

If the validator chooses not to perform an online OCSP check, it shall issue a
signingCredential.ocsp.skippedinformational code.

If the validator attempts to query the OCSP responder but is unable to receive a response, the validator shall issue a
signingCredential.ocsp.inaccessible informational code.

91

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6960

If a response is received and accepted per the requirements 1 - 4 of RFC 6960, section 3.2, it shall establish the signer’s

certificate was not revoked at the time of signing if either of the following requirements is fulfilled:

« The claim signature has a valid time-stamp, and the attested time falls within the
(thisUpdate,nextUpdate) interval of the response, or
« The claim signature does not have a valid time-stamp but the current real-world time falls within the
(thisUpdate,nextUpdate) interval of the response,
And both of the following requirements are fulfilled:
« The certStatus field of the response is good, or revoked but with a revocationReason of
removeFromCRL, and
« The OCSP signer of the response is an "authorized responder" as defined by RFC 6960, section 4.2.2.2.
If the certStatus field of the response is revoked but with a revocationReason that is not

removeFromCRL, it shall establish the signer’s certificate was not revoked at the time of signing if both of the

following requirements are met:

« The manifest has a valid time-stamp, and the attested time falls within the (thisUpdate,nextUpdate)

interval of the response, and

« The revocationTime in the response is after the attested time-stamp.

If the above conditions are met, the certificate shall be considered not revoked at the time of signing, and the

validator shallissue a signingCredential.ocsp.notRevoked success code.
Otherwise:

« If the certStatus field of the response is unknown, the claim shall be rejected with a

signingCredential.ocsp.unknown failure code.

« Else, the certificate shall be considered revoked at the time of signing and the claim shall be rejected with a
signingCredential.ocsp.revoked failure code.

15.10. Validate the Assertions

15.10.1. Validate the correct assertions for the type of manifest

15.10.1.1. General

Depending on the type of manifest, there are assertions that are either required or forbidden. A validator shall check

for required and not-permitted assertions.

92

https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6960

15.10.1.2. Standard Manifest Assertions

Ifitis a standard manifest:

1. Validate that there is exactly one hard binding to content assertion - either a c2pa.hash.data, a
c2pa.hash.boxes, a c2pa.hash.collection.data, c2pa.hash.bmff.v2 (deprecated), or a
c2pa.hash.bmff.v3. If no such assertion is present, the manifest shall be rejected with a failure code of
claim.hardBindings.missing. If thereis more than one such assertion, the manifest shall be rejected with

a failure code of assertion.multipleHardBindings.

2. Validate that there are zero or one c2pa.ingredient assertions whose relationship is parentOf. If
there is more than one, the manifest shall be rejected with a failure code of manifest.multipleParents.

3. Validate that eithera c2pa.createdor c2pa.opened action is contained in exactly one actions assertion.

15.10.1.3. Update Manifest Assertions

Ifitis an update manifest:

1. Validate that exactly one ingredient assertion is present and that its relationshipis parentOf. If there is not
(i.e., either it is missing, there are more than one, or the value of relationshipis not parent0f), the manifest
shall be rejected with a failure code of manifest.update.wrongParents.

2. Validate that there are no c2pa.hash.data, c2pa.hash.boxes, c2pa.hash.collection.data,
c2pa.hash.bmff.v2 (deprecated), c2pa.hash.bmff.v3, or thumbnail assertions. If there are, the

manifest shall be rejected with a failure code of manifest.update.invalid.

3. Validate that there are no c2pa.hash.multi-asset assertions. If there are, the manifest shall be rejected

with a failure code of manifest.update.invalid.

4. If there is one or more c2pa.actions or c2pa.actions.v2 assertions, validate that the action field of
each action found in the actions array of any such assertion is one of the supported values specified in Update

Manifests. If it is not, the manifest shall be rejected with a failure code of manifest.update.invalid.

15.10.2. Preparing the list of redacted assertions

A validator, when processing a claim, shall gather the set of redacted assertions for each ingredient’s manifest (if
present) based on each JUMBF URI listed in its redacted_assertions field. A claim’s redacted_assertions
field shall never include a JUMBF URI to any of its own assertions.

Assertions can be redacted from ingredient assets at any point in the final asset’s provenance
NOTE history, and not necessarily by the claim generator that first uses an ingredient asset as an

ingredient.

For more details, refer to the Section 15.11.3.2, “Performing explicit validation” section.

93

15.10.3. Assertion Validation

15.10.3.1. General

Each assertion in the created_assertions and gathered_assertions fields of the claim (and in the
assertions field of avl claim) isa hashed_ur1 structure. For each assertion, the validator shall first determine if

the URI reference in the url field is in the list of redacted assertions.

Even though the assertions listed in the gathered_assertions field were not created by the
NOTE claim generator, they are still part of the Claim and are therefore also validated according to this

validation algorithm.

If it is in the list of redacted assertions, then if the assertion’s label is c2pa.actions or c2pa.actions.v2, the
claim shall be rejected with a failure code of assertion.action.redacted as c2pa.actions and
c2pa.actions.v2 assertions shall not be redacted. If it is in the list of redacted assertions, then if the assertion’s
label is a hard binding to content assertion - either a c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.collection.data, c2pa.hash.bmff.v2 (deprecated), or c2pa.hash.bmff.v3 - the claim
shall be rejected with a failure code of assertion.dataHash.redacted as these types of assertions shall not be
redacted. Otherwise, the redacted assertion is considered valid, and validation continues based on the type of

assertion.

For all other assertions (not found in the list of redacted assertions), resolve the URI reference in the url field to
obtain its data. If the URI does not refer to a location within the same C2PA Manifest (a self#jumbf location), the
claim shall be rejected with a failure code of assertion.outsideManifest. If the URI cannot be resolved and
the data retrieved, the claim shall be rejected with a failure code of assertion.missing.

Follow the procedure in Section 15.4, “Determining the hashing algorithm” to determine the hash algorithm and any
possible failure codes. Compute the hash of the assertion using that algorithm and the procedure described in
Section 8.4.2.3, “Hashing JUMBF Boxes”, and compare the computed hash value with the value in the hash field. If
they do not match, the claim shall be rejected with a failure code of assertion.hashedURI.mismatch.

Otherwise, a success code of assertion.hashedURI.match shall be recorded.

If the content of a standard assertion is not well-formed CBOR or is non-conforming JSON, the claim shall be rejected
with a failure code of assertion.cbor.invalidorassertion.json.invalid.

NOTE Well-formed CBOR is defined in RFC 8949, Appendix C.
NOTE RFC 8259, Clause 2, defines the grammar that JSON data conforms to.

If an assertion that is present in the assertion store is not referenced by an element of either the
created_assertions or gathered_assertions arrays in the claim (or the assertions array in the vl
claim), the claim shall be rejected with a failure code of assertion.undeclared.

For each URl in the claim’s redacted_assertions array, if the URI points into the claim’s own manifest, the claim

shall be rejected with a failure code of assertion.selfRedacted. A claim is not permitted to redact its own

94

https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8259

assertions.

15.10.3.2. Specific Assertion Validation

For each assertion, the validator shall check the assertion’s label and if it is listed below, the validator shall perform
the specific validation steps for that assertion type. If the assertion’s label is not listed below, then that type of
assertion does not require any additional validation steps beyond those already described.
« c2pa.cloud-data, Section 15.10.3.2.1, “c2pa.cloud-data validation”
« C2pa.actionsorc2pa.actions.v2,Section 15.10.3.2.2, “c2pa.actions validation”
+ c2pa.metadata, Section 15.10.3.2.3, “c2pa.metadata validation”
Ingredient assertions (c2pa.ingredient or c2pa.ingredient.v2 or

NOTE c2pa.ingredient.v3) are subject to additional validation at a different point in the validation
process (see Section 15.11, “Validate the Ingredients”).

If the value of any field of a standard assertion is a hashed_uri or hashed_ext_uri, the validator shall perform
the steps described in Section 15.10.3.3, “Validation of References”, except for the activeManifest field in
c2pa.ingredient.v3, for which special validation behavior is specified in Section 15.11.3, “Ingredient Assertion
Validation”.

15.10.3.2.1. c2pa.cloud-data validation

If the assertion’s label is c2pa.cloud-data:

1. Check that the assertion contains the following fields: Label, size, location and content_type. If any of
those fields are missing, the claim shall be rejected with a failure code of assertion.cloud-
data.malformed.

2. If the Tlabel field of the external assertion is c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.collection.data, c2pa.hash.bmff.v2 (deprecated), c2pa.hash.bmff.v3, the claim
shall be rejected with a failure code of assertion.cloud-data.hardBinding.

3. If the manifest is an update manifest and the label field of the external assertion is c2pa.actions or
c2pa.actions.v2,the claim shall be rejected with a failure code of assertion.cloud-data.actions.

4. The Llocation field shall be validated according to Section 15.10.4.2, “Validation of External References”.
15.10.3.2.2. c2pa.actions validation

If the assertion’s labelis c2pa.actionsorc2pa.actions.v2:

1. Ensure that it has an actions field. If not, the claim shall be rejected with a failure code of

assertion.action.malformed.
2. Foreach actioninthe actions list:

a. If the action field is either c2pa.created or c2pa.opened, then the claim shall be rejected with a

95

96

failure code of assertion.action.malformed unless all of the following are true:

i. the assertion is the first actions assertion in the created_assertions or gathered_assertions

array (of av2 claim), or the first actions assertion in the assertions array of a vl claim, and
ii. the action is the first elementin the actions array in this assertion.
b. Ifthe actionfieldis c2pa.opened, c2pa.placed,or c2pa.removed:

i. If the action has no parameters field, or that field’s value is empty, the claim shall be rejected with a

failure code of assertion.action.ingredientMismatch.

ii. If the action’s parameters field contains no ingredients field (or ingredient field for
c2pa.actions), the claim shall be rejected with a failure code of

assertion.action.ingredientMismatch.

iii. If the value of the ingredients field is not an array with at least one element, the claim shall be

rejected with a failure code of assertion.action.ingredientMismatch.
iv. Check references to ingredient assertions:

A. For c2pa.opened: Check that the -1dngredients field (or ingredient field for
c2pa.actions) contains exactly one valid hashed URI that can be resolved to an ingredient
assertion in the current manifest whose relationship field is parentOf. If not, then the claim

shall be rejected with a failure code of assertion.action.ingredientMismatch.

B. For c2pa.placed: Check that the dingredients field (or -dingredient field for
c2pa.actions) contains one or more valid hashed URIs, each of which can be resolved to an
ingredient assertion in the current manifest whose relationshiip field is componentOf. If not,
then the claim shall be rejected with a failure code of
assertion.action.ingredientMismatch.

C. For c2pa.removed: Check that the -dingredients field (or ingredient field for
c2pa.actions) contains one or more valid hashed URIs, each of which can be resolved to an
ingredient assertion in another manifest whose relationship field is componentOf. If not, then

the claim shall be rejected with a failure code of assertion.action.ingredientMismatch.
c. Iftheactionfieldis c2pa.transcodedorc2pa.repackaged:

i. If the ingredients field (or ingredient field for c2pa.actions) is present, check that each
element of that field is a valid hashed URI that can be resolved to an ingredient assertion in the current
manifest with relationship parentOf. If not, then the claim shall be rejected with a failure code of

assertion.action.ingredientMismatch.
d. Ifthe actionfield is c2pa. redacted:

i. Check the redacted field that is a member of the parameters object for the presence of a JUMBF URI.
If the JUMBF URI is not present, or cannot be resolved to an assertion, the claim shall be rejected with a
failure code of assertion.action.redactionMismatch.

e. If there is a softwareAgent field in the action-common-map-v2 or one or more softwareAgents

listed in the softwareAgents field of the actions-map-v2:

i. Ifthereisan icon fieldinthe generator-info-map, then it shall be validated as described in Section
15.10.3.3, “Validation of References”.

f. For each template in the templates list:

i. If there is an 1icon field in the action-template-map-v2, then it shall be validated as described in
Section 15.10.3.3, “Validation of References”.

15.10.3.2.3. c2pa.metadata validation

If the assertion’s label is c2pa.metadata, the validator shall ensure that the assertion does not contain fields
outside the allowed list. If any field contained in the assertion is not in the allowed list, the claim shall be rejected with
afailure code of assertion.metadata.disallowed.

NOTE This validation requirement will necessitate a validator parsing the JSON-LD data contained in the
assertion.

15.10.3.2.4. c2pa.time-stamp validation

If the assertion’s label is c2pa.time-stamp, the validator shall ensure that the assertion is well-formed CBOR
consisting of a single map (Major type 5) with at least one key/value pair. If this is not the case, the claim shall be

rejected with a failure code of assertion.timestamp.malformed.

Since validation of the time-stamp token is performed as described in Section 15.8.2, “Validating the
TimeStampToken”, the validator needs to store the time-stamp token (and its associated C2PA Manifest identifier) for
later use.

15.10.3.3. Validation of References

Some C2PA standard assertions support referencing other boxes in the C2PA Manifest via the use of a hashed_ur1i
and hashed_ext_uri. For example, there can be various references in actions, ingredient, and thumbnail
assertions.

For all hashed_uri and hashed_ext_ur1 fields in standard assertions, except for the activeManifest field in
c2pa.ingredient.v3 (for which special validation behavior is specified in Section 15.11.3, “Ingredient Assertion
Validation”), the validator shall perform the following validation: . For a hashed_ext_uri whose resource the
validator chooses to retrieve, the validator shall perform the steps described in Section 15.10.4.2, “Validation of
External References”. . Forahashed_uri, the validator shall perform the steps described below.

The destination of a hashed_uri is found in its url field. If the field is not present or the destination cannot be
located (i.e., that data isn’t present where it is supposed to be) then it shall be treated as a validation failure with code

hashedURI.missing.

If the destination can be located, then proceed as follows: . Follow the procedure in Section 15.4, “Determining the
hashing algorithm” to determine the hash algorithm and any possible failure codes. . Ensure that the hash field is
present in the hashed_uri structure. If it is not, the claim shall be rejected with a failure code of
hashedURI.mismatch. . Compute the hash of the assertion using the determined hash algorithm and the

97

procedure described in Section 8.4.2.3, “Hashing JUMBF Boxes”.. Compare the computed hash value with the value in

the hash field. If they do not match, the claim shall be rejected with a failure code of hashedURI.mismatch.

15.10.4. External Data Validation

15.10.4.1. General

The contents of a cloud data assertion contains the URI references to and hashes of external data, are validated like

any other assertion, but those references are not retrieved and validated as part of standard validation. A validator

shall first successfully validate a claim before attempting to retrieve the external data referenced. A validator shall not

attempt to retrieve external data from a rejected claim. As the retrieval of external data is optional, the inability to

retrieve or validate external data shall not cause a claim to become rejected.

If a validator chooses to retrieve any of the external data in a cloud data assertion, the validator shall performs the

steps described in Section 15.10.4.2, “Validation of External References”.

15.10.4.2. Validation of External References

The following procedure shall be used to validate the external data referenced in a cloud data assertion:

1. Resolve the URI reference in the url field to obtain its data. If the ur field is not present or the URI cannot be

resolved and the data retrieved, the validator shall abort the attempt to retrieve the external data.

. If the size of the retrieved data is not equal to the value of the s1ze field, the validator shall return a failure code

of assertion.hashedURI.mismatch tothe application and not provide the retrieved data.

3. Validate that the content type returned in the Content-Type header of the HTTP response is equal to the

98

declared content type. If they do not match, the validator shall return a failure code of
assertion.hashedURI.mismatch to the application and not provide the retrieved data. The declared

content type is determined by:

a. For external data, the content type is determined by the dc:format field of the hashed_ext_uri
structure. If the dc: format field is absent, content type validation is always successful.

b. For a cloud data assertion, if the dc: format field is present in its Location field, that determines the
content type and the value of the cloud data assertion’s content_type field is ignored. If Location does
not have a dc: format field, then the assertion’s content_type field determines the content type.

. Determine the hash algorithm to be used as specified in Section 15.4.2, “For Hashed Ext URIs” or possible failure

codes.

. Compute the hash of the data using the determined hash algorithm and the procedure described in Section

8.4.2.3, “Hashing JUMBF Boxes” on the retrieved content. For external data, use the hash algorithm and the exact

retrieved content as input to the hash function.

a. Compare the computed hash value with the value in the hash field. If the hash field is not present or they do
not match, the validator shall return a failure code of assertion.hashedURI.mismatch to the

application and not provide the retrieved data.

b. Otherwise, the validator shall record a success code of assertion.hashedURI.match and provide the

retrieved data to the application.

15.11. Validate the Ingredients

15.11.1. Explanation

A validator shall perform the validation steps for the asset being presented and its active manifest. If any of the steps

conclude the active manifest is invalid, that manifest shall be rejected with the indicated failure code.

An asset’s active manifest may list one or more ingredients, through the use of ingredient assertions. Some of those
ingredients may have their own manifests associated with them, and some of those manifests may themselves have
ingredients and ingredient manifests.

15.11.2. Processing Ingredient Manifests

15.11.2.1. Standard Manifests in an ingredient

When processing a standard manifest, a validator shall validate each ingredient (regardless of the value of its

relationship field), as described below.

15.11.2.2. Update Manifests in an ingredient

For update manifests, the parentOf ingredient of the update manifest shall be validated as described below.

15.11.2.3. Time-Stamp Manifests in an ingredient

This feature has been deprecated in favour of the time-stamp assertion. The information
IMPORTANT . _ T
below is retained for historical purposes.

Any time-stamp manifests found in an ingredient shall be ignored.

15.11.3. Ingredient Assertion Validation

15.11.3.1. Validation Overview

99

N \ /

For each ingredient assertion For each ingredient in "all ingredient manifests”
list

Extract suuid from the
Resalve the URI of the urn:uu:
ingredient assertion manifest/
g claimsignature fuple

|

Search "all redacted
assertions" list for matching
urn:uuid

Create two empty lists: "all
ingredient manifests” and
"all redacted assertions”

l

Set active manifest of asset
as target manifest

I

Resolve the URI of target
manifest's claim

Resalution
successful?

Ingredient
assertion has
ictiveManifes
field?

Yes
Validate ingredient using
claim signature hash
validation method
Append tuple of URI
AT references to manifest Any entries in "all
/ N and claimSignature to ingredient manifests" list
| Retun | Resalution "all ingredient manifests" list remaining?
| j€—No- 9
| claim missing | successful?
N mq/ Yes
~_ Validate ingredient using
“—> manilest hash validation
method
Yes Set just o
manifest as target manifest No
Target manifest Target manifest
claim has redacted Ny claim has i No- Currem\y|m 9
assertions? assertions? fectirsian slep
Yes
/ Reum Redacted assertion Add JUMBF URI of each Note:
| Return from
| assertion. €—Yes from same target N redacted assertion to "all - This diagram is incomplete. Please refer to the text for
\.)mm/" manifest? redacted assertions" list recursion normative guidance.
~__

Figure 14. Ingredient Validation

The flowchart in Figure 14, “Ingredient Validation” describes the process of validating any ingredient assertions

contained in a given C2PA Manifest.

NOTE If there are any discrepancies between the visual representation and the text, the text is considered
authoritative.

15.11.3.2. Performing explicit validation

If the relationship field is not present in an ingredient assertion, the assertion shall be rejected with a failure

codeof assertion.ingredient.malformed.

The value of the relationship field shall be one of the following: parentOf, inputTo, or componentOf. If the
value of the relationship field is not one of these, the assertion shall be rejected with a failure code of

assertion.ingredient.malformed.

15.11.3.3. Performing recursive validation

The validator shall recursively validate all ingredient manifests in the asset, for example using a depth-first search as

100

described below. A validator need not implement the algorithm exactly as described, but the results of the validation
shall be equivalent to the results of this algorithm.
1. Create two empty lists:
a. Alist to hold the hashed_ur1 values of all ingredient manifests used in the asset, anywhere in its lineage.
b. Alist to hold the JUMBF URIs of all redacted assertions in the asset, anywhere in its lineage.
2. Set the active manifest of the asset being validated as the target manifest
3. Begin recursion.

4. Locate the claim, as described in Section 15.6, “Locating and Validating the Claim”. If unable to, reject claim with

aclaim.missingfailure code.

5. If the claim of the target manifest contains a redacted_assertions field, check the JUMBF URI of each

redacted assertion.

a. If the redacted assertion is from the target manifest, reject the claim with an assertion.selfRedacted
failure code.

b. Otherwise, append the JUMBF URI of the redacted assertion to the list of all redacted assertions.
6. If the claim of the target manifest includes ingredient assertions:
a. For each ingredient assertion:

i. Attempt to resolve the hashed URI of the ingredient assertion. If the URI does not resolve, or the hash
does not match, or the assertion’s JUMBF Content boxes contain only zeros, skip to the next ingredient
assertion.

ii. If the ingredient assertion has an activeManifest field (or c2pa_manifest field in a vl or v2
ingredient assertion):

A. Append a tuple that includes the following values to the list of all ingredient manifests:

= The hashed_uri value of the activeManifest (or c2pa_manifest) field in the ingredient
assertion

= The hashed_uri value of the claimSignature field in the ingredient assertion

B. Set the just-appended ingredient manifest as the target manifest, and repeat the process as above
from the "Begin recursion" step.

ii. If the ingredient assertion does not have an activeManifest (or c2pa_manifest) field, record an
ingredient.unknownProvenance informational code unless the value of the relationship
field is inputTo, and then skip to the next ingredient assertion until they are all exhausted. At that point,

return from the current recursion level.
7. If the claim of the target manifest does not include ingredient assertions, return from the current recursion level.

8. End recursion.

Having compiled a list of all ingredient manifests and a list of all redacted assertions, the validator shall perform the

101

following validation algorithm:

1. For each ingredient manifest in the list of all ingredient manifests:
a. Extract the manifest label from the ingredient manifest JUMBF URI from each tuple
b. Search the list of all redacted assertions for assertions with a matching manifest label
c. If one or more matching redacted assertions are found:

i. Validate the ingredient using the claim signature hash validation method, described in Section
15.11.3.3.1, “Claim Signature Hash Validation Method”.

d. If no matching redacted assertions are found:

i. Validate the ingredient using either the manifest hash validation method, described in Section
15.11.3.3.2, “Manifest Hash Validation Method”, or the claim signature hash validation method, described
in Section 15.11.3.3.1, “Claim Signature Hash Validation Method”.

e. If theingredient assertion contains a validationResults field:

i. For each entry in the value of the validationResults field, if an equivalent entry was not returned as
part of the validation process, return it as part of the validation results.

ii. If there are any entries returned as part of the validation process that are not present in the
validationResults field, return it as part of the validation results.

f. If novalidationResults field is present and the ingredient assertion is a v3 ingredient assertion with the

activeManifest field present, then return the failure code assertion.ingredient.malformed.

Validators should ignore any additional C2PA Manifests that appear in the C2PA Manifest Store but are not in the list of
ingredient manifests.

NOTE Ignoring additional C2PA Manifests supports compatibility with custom assertions and future
constructs that may reference C2PA Manifests in ways that the validator does not recognize.

15.11.3.3.1. Claim Signature Hash Validation Method

This method includes a full validation of the ingredient’s claim, like that performed for the active manifest, except
that content bindings are not evaluated:

1. Resolve the URI reference in the url value of the claimSignature field to obtain the ingredient’s claim
signature box. If the URI reference cannot be resolved, or the claimSignature field is not present, the

ingredient claim is rejected with a failure code of ingredient.claimSignature.missing.

2. Determine the hash algorithm identifier (or possible failure code) by following the procedure in Section 15.4,

“Determining the hashing algorithm”.

3. Compute the hash of the ingredient claim signature box using that algorithm and the procedure described in
Section 8.4.2.3, “Hashing JUMBF Boxes”.

4. Compare the computed hash with the value in the hash field.

102

a. Ifthe hashes are not equal or the hash field is not present:
i. Reject the claim with a failure code of ingredient.claimSignature.mismatch.
b. If the hashes are equal,issue a ingredient.claimSignature.validated.

i. Validate the claim signature, time-stamp, and credential revocation information as per Section 15.7,
“Validate the Signature”, Section 15.8, “Validate the Time-Stamp”, and Section 15.9, “Validate the
Credential Revocation Information”.

ii. For each URI in the list of redacted assertions with a matching manifest label, if the referenced assertion
is present and any JUMBF Content box or padding box within it contains anything other than zero or
more Ox00 bytes, the claim shall be rejected with a failure code of assertion.notRedacted.

iii. Validate each non-redacted assertion per Section 15.10, “Validate the Assertions”, except for the hard

binding assertions, which cannot be validated for ingredients.

When using the claim signature hash validation method, the validator shall not record hash mismatch failure codes
forthe activeManifest field.

NOTE The reason for this is that if redactions affect the referenced manifest, it is possible that the hash for
this field would not match.

15.11.3.3.2. Manifest Hash Validation Method

An ingredient manifest that has not been changed due to redaction can be validated faster if the current validator
trusts the previous claim generator’s validation results:

1. Resolve the URI reference in the url value of the activeManiifest field to obtain the ingredient’s manifest
box. If the url field is not present or the URI reference cannot be resolved, the ingredient claim is rejected with a

failure code of ingredient.manifest.missing.

2. Determine the hash algorithm identifier (or possible failure code) by following the procedure in Section 15.4,

“Determining the hashing algorithm”.

3. Compute the hash of the ingredient manifest box using that algorithm and the procedure described in Section
8.4.2.3, “Hashing JUMBF Boxes”.

4. Compare the computed hash with the value in the hash field.
a. If the hashes are not equal or the hash field is not present:
i. Reject the claim with a failure code of ingredient.manifest.mismatch.

b. If the hashes are equal, the ingredient is fully validated and a ingredient.manifest.validated
success code is issued.

15.12. Validate the Asset’s Content

The asset’s content shall be validated using the hard binding in the active manifest if the active manifest is a standard

manifest. If the active manifest is an update manifest, the hard binding shall be found in the parentOf ingredient’s

103

manifest, or if that manifest is also an update manifest, by following the chain of parentOf ingredients to the first
standard manifest. If no standard manifest is found, or the standard manifest has no hard binding, then the active

manifest’s claim shall be rejected with a failure code of claim.hardBindings.missing.

An asset may also be composed of multiple parts, where each part has its own associated hash (see Section 18.9,
“Multi-Asset Hash”) which may be validated separately. For example, an asset may consist of separate static image &

video parts, each of which can be validated separately.

15.12.1. Validating a data hash

15.12.1.1. General

Once a standard manifest (and its bindings) has been located, the exclusion range(s) shall be extracted from the

c2pa.hash.data assertion.

If the ending byte offset of one exclusion range (start + length) is greater than the starting byte offset of the next
exclusion range in the array, or a start or length value is negative, then the manifest shall be rejected with a

failure code of assertion.dataHash.malformed.

If any update manifests were encountered then the length value of the exclusion range whose start value is the
offset of the start of the entire C2PA Manifest Store shall be treated as the current length of the entire C2PA Manifest

Store plus any file format specific extras.

The hash algorithm (alg) specified in that c2pa.hash.data shall be computed over the bytes of the asset, except
for those specified in the exclusion range(s). If the end of an exclusion range falls beyond the end of the asset, then the

manifest shall be rejected with a failure code of assertion.dataHash.mismatch.

If the hash algorithm specified in the a'lg field does not appear in the allowed or deprecated list in Section 13.1,
“Hashing”, then the manifest shall be rejected with a failure code of algorithm.unsupported.Ifthe hash field is
not present, then the manifest shall be rejected with a failure code of assertion.dataHash.mismatch.

The combination of exclusion ranges and padding values, especially padding needed to support multi-pass
processing workflows, may enable an attacker to replace parts of that padding with arbitrary data that could impact
the consumption of the asset without invalidating the hash. For this reason a validator shall ensure that the data
contained within the exclusion range including a C2PA Manifest Store consists only of the C2PA Manifest Store and
appropriate padding (e.g., zero’d data) in clearly marked pad fields or free/skip boxes. Within other exclusion ranges
than above C2PA Manifest Store, all or part of the asset metadata may also be included as described in Section 9.2.5,
“Asset Metadata Bindings”. If a validator encounters any data other than those permitted above, then the manifest
shall be rejected with a failure code of assertion.dataHash.mismatch. If a validator encounters exclusion
ranges other than that for the C2PA Manifest Store and appropriate padding (e.g., zero’d data) in clearly marked pad
fields or free/skip boxes, an informational code assertion.dataHash.additionalExclusionsPresent

shall be set.

If no error conditions were encountered, the validator shall add the success code assertion.dataHash.match

to the list it eventually returns.

104

If the hash computed over all the asset’s data (minus any exclusion ranges) does not match the value of the hash
field in the c2pa.hash.data, then the validator shall look for presence of a multi-asset hash assertion. If one is
present, it shall be validated as described in Section 15.12.4, “Validating a multi-asset hash”, but if one is not present,

the manifest shall be rejected with a failure code of assertion.dataHash.mismatch.

15.12.1.2. Hashing of JPEG 1 files

In JPEG 1 files, the file format extras described above would include any APP11 markers and their respective segment
length bytes for APP11 segments. Because the segment lengths are inside the exclusion range, a validator shall
match the total length of the exclusion range with that of the total length of all APP11 segments representing the
C2PA Manifest to ensure that the length was not tampered with.

A JPEG 1 file can contain APP11 segments for reasons other than C2PA (e.g., JPEG 360 or JPEG
Privacy and Security) and those are not included in these calculations.

NOTE

15.12.2. Validating a BMFF-hash

For any portions of an asset rendered for presentation to a user, including but not limited to audio, video, or text, the
corresponding hard binding corresponding to the rendered content shall be validated in accordance with Section 9.2,
“Hard Bindings”. If the standard hard binding does not validate, and a multi-asset hash assertion is present, it shall be
validated as described in [validating_a_multi_asset_hash]. If at any time content fails to be validated, the validator
shall clearly signal to the user that some of the content does not match the claim, and if possible, should indicate
what part of the content did not validate. If any content is absent for which content bindings exist, discovery of this
absence is also a validation failure. The validator shall continue to report validation has failed, even if later portions of

the content validate correctly.

For content that is not wholly available before rendering begins, such as during adaptive bitrate streaming (ABR) and
progressive download, absence of not-yet-available portions of content is not considered a validation failure. As the
content becomes available, the validator shall validate each portion of the content before it is rendered as previously
described. In addition, the validator shall validate that the sequence of said content is the same as when the manifest
was produced. Unless the player has explicitly signalled the validator that a discontinuity is expected (e.g., when the
consumer performs a manual seek operation via the Ul), the validator shall clearly signal to the user that an
unexpected discontinuity has occurred whenever the sequence does not match. This includes validating that the
location values for a given Merkle tree start at zero and increments by one for each following chunk; equivalently,

the Tocation value always indicates which chunk is being rendered.

For content that is to be validated during playback via progressive download, the leaf nodes of the merkle tree may
align to synchronization points of the video track in the 'mdat"' (e.g., the RAP points random access points). When
the "variableBlockSizes"' are setup to achieve such alignment, validation during linear playback or seeking to
desired playback time can be both achieved via the same sequence. The desired blocks shall be fetched, validated

and the tracks within them selected for rendering.

For content that is intentionally not being rendered as the claim generator originally intended, such as during fast-
forward, rewind, or playback at a different speed, the validator may not be able to validate the content. In this case,

105

the validator shall clearly signal to the user that the content cannot be validated during the corresponding operation.

For content with C2PA ContentProvenanceBox with box_purpose set to update presence, the active manifest is
first searched in the C2PA ContentProvenanceBox with box_purpose set to update then in the C2PA
ContentProvenanceBox with box_purpose set to original. If the active manifest is in the C2PA
ContentProvenanceBox with box_purpose set to update, trace the ingredient parent chain (looking in either C2PA
ContentProvenanceBox with box_purpose set to update or original as needed) until the first non update
manifest is found. The BMFF hash of this manifest content shall be validated in accordance with Section 9.2, “Hard
Bindings”. The addition of an C2PA ContentProvenanceBox with box_purpose set to update should not affect the

hash calculation since it was added to the end of the file not changing any offsets.

If the bmff-hash-map does not contain an exclusions field or that field’s value is not of type array with at least

one entry, then the manifest shall be rejected with a failure code of assertion.bmffHash.malformed.

Determine the hash algorithm identifier (or possible failure code) by following the procedure in Section 15.4,
“Determining the hashing algorithm”.

If the ending byte offset of one subset range (offset + length) is greater than the offset value of the next
range in the array, or an offset or Length value is negative, then the manifest shall be rejected with a failure code
of assertion.bmffHash.malformed. The assertion.bmffHash.mismatch failure code is used for all
other failures described in this section. Otherwise, the validator shall add the success code

assertion.bmffHash.match to the list it eventually returns.

If the BMFF hashing process produces a assertion.bmffHash.mismatch failure code, then the validator shall
look for presence of a multi-asset hash assertion. If one is present, the assertion.bmffHash.mismatch failure
code shall not be issued, and instead the multi-asset hash assertion shall be validated as described in Section 15.12.4,
“Validating a multi-asset hash”; otherwise, the manifest shall be rejected with a failure code of

assertion.bmffHash.mismatch.

15.12.2.1. Non-fragmented asset using merkle tree

If the merkle field in the bmff-hash-map is present, the validator shall validate the Merkle tree. If the
fixedBlockSize and variableBlockSizes in bmff-merkle-map are not present, the whole payload of the
mdat is treated as a single leaf node for hash calculation. If the fixedBlockSize is present and if
variableBlockSizes is not present, the payload of the mdat is divided into fixed-length blocks, each block is
treated as a leaf node. If the final block exceeds the end of the mdat payload, the size of the last block should be set to
extend only to the end of the mdat payload. If the variableBlockS1ize is present and if fixedBlockSizes is
not present, the payload of the mdat is divided into sizes defined by the array of variableBlockS1izes. If the
number of elements is not equal to count or sum of the values is not equal to size of payload of mdat, then the
manifest shall be rejected with a failure code of assertion.bmffHash.malformed. If the fixedBlockSize
and variableBlockSizes in bmff-merkle-map are present, then the manifest shall be rejected with a failure

code of assertion.bmffHash.malformed.

If the count in the bmff-merkle-map is equal to the number of elements of hashes in the bmff-merkle-map

and if the hash of leaf node doesn’t match the element of hashes in the bmff-merkle-map, then the manifest

106

shall be rejected with a failure code of assertion.bmffHash.mismatch If the count in the bmff-merkle-
map is smaller than the number of elements of hashes in the bmff-merkle-map and if the auxiliary uuid C2PA
box doesn’t exist as described in Section A.5.4, “Auxiliary 'c2pa' Boxes for Large and Fragmented Files”, then the
manifest shall be rejected with a failure code of assertion.bmffHash.malformed. If the hash calculated from
the auxiliary uuid C2PA box and leaf node doesn’t match the element of hashes in the bmff-merkle-map, then
the manifest shall be rejected with a failure code of assertion.bmffHash.mismatch. If the count in the
bmff-merkle-map is bigger than the number of elements of hashes in the bmff-merkle-map, then the
manifest shall be rejected with a failure code of assertion.bmffHash.malformed.

15.12.2.2. Fragmented asset using Merkle tree

If the merkle field in the bmff-hash-map is present, the validator shall validate the Merkle tree. If the auxiliary
uuid C2PA box doesn’t exist as described in Section A.5.4, “Auxiliary 'c2pa' Boxes for Large and Fragmented Files”,
then the manifest shall be rejected with a failure code of assertion.bmffHash.malformed. If the hash
calculated from the auxiliary uuid C2PA box and leaf node doesn’t match the element of hashes in the bmff-

merkle-map is not equal, then the manifest shall be rejected with a failure code of
assertion.bmffHash.mismatch

15.12.3. Validating a general box hash

Once a standard manifest (and its bindings) has been located, the list of boxes to be validated shall be extracted from
the boxes field of the box—map structure stored in the c2pa.hash.boxes assertion. If no such field is present,
then the manifest shall be rejected with a failure code of assertion.boxesHash.malformed.

The boxes shall appear in the asset in the same order that they appear in the boxes array, including the box
containing the C2PA Manifest. If there are any other boxes present in the asset, then the manifest shall be rejected
with a failure code of assertion.boxesHash.unknownBox. If the boxes appear out of order, then the manifest

shall be rejected with a failure code of assertion.boxesHash.mismatch.

If the hash value for any box does not match, and that box does not have an excluded field with a value of true,
then the manifest shall be rejected with a failure code of assertion.boxesHash.mismatch. Otherwise, the
validator shall add the success code assertion.boxesHash.match to the list it eventually returns.

If the hash algorithm specified in any alg field does not appear in the allowed or deprecated list in Section 13.1,
“Hashing”, or an a'lg field does not appear in either the box-map or any specific box-hash-map, then the manifest
shall be rejected with a failure code of algorithm.unsupported.

If any box-hash-map in the boxes array does not contain a names field, then the manifest shall be rejected with a
failure code of assertion.boxesHash.malformed.

For each box listed in the names and boxes array, the specified hash algorithm shall be computed over the bytes of
the box (along with any associated header). If there are multiple entries in a names array, the hash value for that
range of boxes shall be computed from the start of the first box (in the range) until the end of the last box (in the
range). This would include any arbitrary bytes that may be present between boxes.

107

If the hash field is not present, or any resultant hash does not match the value of the hash field for those boxes, then
the manifest shall be rejected with a failure code of assertion.boxesHash.mismatch. If the box hashing
process produces a assertion.boxesHash.mismatch failure code, then the validator shall look for presence of
a multi-asset hash assertion. If one is present, it shall be validated as described in Section 15.12.4, “Validating a multi-
asset hash”, but if one is not present, the manifest shall be rejected with a failure code of
assertion.boxesHash.mismatch.

15.12.3.1. JPEG Special Handling

When validating a JPEG, a validator shall check that each box identified with the special C2PA box identifier is indeed
an APP11 containing some or all of the C2PA Manifest Store. The C2PA Manifest Store is identified by it being a JUMBF
superbox with a label of c2pa and a JUMBF type UUID of 63327061-0011-0010-8000-00AA00389B71 as
described in Section 11.1.4.2, “Manifest Store”.

Ifan APP11 thatis not part of the C2PA Manifest Store is present and not included in the list of hashed boxes, then the
manifest shall be rejected with a failure code of assertion.boxesHash.unknownBox.

15.12.3.2. Font Special Handling

When validating a font, a validator shall check that the box corresponding with the font’s C2PA table is present, and
determine whether it contains an embedded manifest, a remote manifest URI or both.

If any font tables are present which are not covered by any box, then the manifest shall be rejected with a failure code
of assertion.boxesHash.unknownBox.

15.12.4. Validating a multi-asset hash

If the standard validation of the asset’s hard binding fails, and the asset contains a multi-asset hash assertion, then
the validator shall proceed to validate the multi-asset hash assertion. If more than one multi-asset hash assertion is
present, then the manifest shall be rejected with a failure code of assertion.multiAssetHash.malformed.

Validation of the multi-asset hash assertion (c2pa.hash.multi-asset) shall be performed by iterating over the
array of partsinthe multi-asset-hash-map. If the parts field is not present, or it is present with a value that
is an empty array, then the manifest shall be rejected with a failure code of
assertion.multiAssetHash.malformed.

For each part, the validator shall ensure that it contains both valid a Locator and a valid hashAssertion field. If
either of these are missing, then the manifest shall be rejected with a failure code of

assertion.multiAssetHash.malformed.

If the locatoris byte-offset-locator, then the validator shall ensure that the byteOffset and length fields
are present, non-negative and do not go beyond the total length of the asset. If either of these are missing, negative or
too large, then the manifest shall be rejected with a failure code of assertion.multiAssetHash.malformed.

If the locator is represented by a bmffBox, then the validator shall ensure that the specified box is present in the

108

asset. If the box is not present, then the manifest shall be rejected with a failure code of

assertion.multiAssetHash.malformed.

Given a valid locator and hash, the validator shall attempt to locate the part using the locator information. If it is not
present, and the optional field is either not present or present with a value of false, then the manifest shall be
rejected with a failure code of assertion.multiAssetHash.missingPart. If the optional field is present

with a value of true, then the validator shall skip over this part and continue with the next part.

Discarding certain parts may prevent a validator from being able to unambiguously identify the
NOTE remaining parts. In most cases, only one or more parts at the end of the file, rather than any parts in
the middle, can be discarded effectively.

If the located parts are overlapping or do not, in aggregate, cover every byte of the asset, then the manifest shall be

rejected with a failure code of assertion.multiAssetHash.malformed.

For each located part, the validator shall compute the hash of the part using the specified algorithm & methodology
(i.e., data hash, general box hash, or BMFF hash) over the bytes of the part. If the resultant hash does not match the
value present in the hard binding assertion referenced from the hashAssertion field, then the manifest shall be

rejected with a failure code of assertion.multiAssetHash.mismatch.

If the hash assertion for each located part validates successfully, then the validator shall record the success code
assertion.multiAssetHash.match and shall not record any failure codes associated with the asset’s hard
binding.

15.12.5. Validating a collection data hash

15.12.5.1. General

Validation of a collection data hash assertion (c2pa.hash.collection.data) that has been located in a
standard manifest shall be performed by iterating over the array of uris in the collection-data-hash-map. If
there is no wuris field present, then the manifest shall be rejected with a failure code of
assertion.collectionHash.malformed.

The specific hash algorithm to use shall be determined from the value of the alg field, and processed as specified in
Section 15.4.3, “Algorithm validation”. If there is no alg field present, then the manifest shall be rejected with a
failure code of assertion.collectionHash.malformed.

For each uri-hashed-data-map in the uris array, the validator shall ensure that it contains both a uri and a
hash field. If either of these fields are missing, then the manifest shall be rejected with a failure code of
assertion.collectionHash.malformed.

In order to avoid any potential security concerns, a validator shall validate the URIs (i.e., the value of the uri field)
before use, ensuring that neither . nor . . appear as part of the URI. If either of these are found in a URI, the manifest

shall be rejected with a failure code of assertion.collectionHash.invalidURI.

109

For the asset retrieved from the URI, its hash shall be computing using the specified algorithm over all bytes of its
data. If the resultant hash does not match the value of the hash field, then the manifest shall be rejected with a
failure code of assertion.collectionHash.mismatch. Otherwise, the validator shall add the success code

assertion.collectionHash.match to the list it eventually returns.

If there are any files listed in the collection data hash assertion that are not found by the validator, then the manifest

shall be rejected with a failure code of assertion.collectionHash.incorrectFileCount.

15.12.5.2. Extras for ZIP

In a ZIP file with an associated C2PA Manifest, the collection data hash contains the additional
zip_central_directory_hash field. As described earlier, this field contains a hash of every "central directory
header" in the ZIP Central Directory as well as the the "end of central directory record" (which is the last part of a ZIP
file). The hash algorithm used for this field is the same as the one used for the hash field in the

c2pa.hash.collection.data assertion.

When validating a ZIP file, the validator shall check that the zip_central_directory_hash field is present and
that the hash of the ZIP Central Directory and "end of central directory record" matches its value. If the hash does not

match, then the manifest shall be rejected with a failure code of assertion.collectionHash.mismatch.

110

Chapter 16. User Experience

16.1. Approach

The C2PA intends to provide clear recommendations and guidance for implementers of provenance-enabled user
experiences (UX). Developing these recommendations is an ongoing process that involves diverse stakeholders, with
the results balancing uniformity and familiarity with utility and flexibility for users across contexts, platforms, and

devices. These recommendations can be found in the User experience guidance document.

16.2. Principles

The UX recommendations aim to define best practices for presenting C2PA provenance to consumers. The

recommendations strive to describe standard, readily recognizable experiences that:

« provide asset creators a means to capture information and history about the content they are creating, and

« provide asset consumers information and history about the content they are experiencing, thereby empowering

them to understand where it came from and decide how much to trust it.

User interfaces designed for the consumption of C2PA provenance shall be informed by the context of the asset. We
have studied 4 primary user groups and a collection of contexts in which C2PA assets are encountered. These user
groups have been defined in the C2PA Guiding Principles as Consumers, Creators, Publishers and Verifiers (or
Investigators). To serve the needs of each of these groups across common contexts, exemplary user interfaces are
presented for many common cases. These are recommendations, not mandates, and we expect best practices to
evolve.

16.3. Disclosure Levels

Because the complete set of C2PA data for a given asset can be overwhelming to a user, we describe 4 levels of
progressive disclosure which guide the designs:
+ Level 1: An indication that C2PA data is present and its cryptographic validation status.

+ Level 2: A summary of C2PA data available for a given asset. This level should provide enough information for the
particular content, user, and context to allow the consumer to understand to a sufficient degree how the asset
came to its current state.

« Level 3: A detailed display of all relevant provenance data. Note that the relevance of certain items over others is
contextual and determined by the UX implementer.

« Level 4: For sophisticated, forensic investigatory usage, a tool capable of revealing all the granular detail of
signatures and trust signals is recommended.

111

1.4@ux:UX_Recommendations.pdf
https://c2pa.org/principles/

16.4. Public Review, Feedback and Evolution

The team authoring the UX recommendations is cognizant of its limitations and potential biases, recognizing that
feedback, review, user testing and ongoing evolution is a key requirement for success. The recommendations will
therefore be an evolving document, informed by real world experiences deploying C2PA UX across a wide variety of

applications and scenarios.

112

Chapter 17. Information security

17.1. Threats and Security Considerations

This section provides a summary of information security considerations and processes for technology described in
the C2PA core specification. More detailed content will be provided in future releases of C2PA material including the

Guidance document.

17.1.1. Context

Information security is a principal concern of C2PA. C2PA maintains a threat model and security considerations for the
C2PA specification. This effort complements other security-related work within C2PA. Associated documentation is

currently in development and can be found at Security Considerations.
The C2PA is developing security considerations documentation that includes:

« Asummary of relevant security features of C2PA technology
« Security considerations for practical use of C2PA technology

« Threats to C2PA technology and respective treatment of those threats, including countermeasures

17.1.2. Threat modelling process overview

The C2PA builds security into our designs as they are being developed, but also expects that security design and

threat modelling will continue as the system, ecosystem, and threat landscape evolve.

To this end, the C2PA uses a focused threat modelling process to support development of a strong security and
privacy design. Outcomes of the effort directly support development of explicit threats and security considerations
documentation, but also facilitate security thinking throughout the design process.

The threat modelling process combines synchronous (live) threat modelling sessions consisting of focused groups of
subject matter experts (SMEs) with asynchronous development of content. The number of attendees in each
synchronous session is kept small to promote efficient discussions, but all members of the C2PA have the opportunity

to participate via either modality.

Like other security activities, we expect our threat modelling process to evolve with the C2PA ecosystem. Process
documentation is considered a guide rather than a strict directive on how threat modelling works within the C2PA.

17.1.2.1. References

A variety of references and experiences are used to inform threat modelling and related security activities for the

C2PA. This section provides a subset of public documents for reference.

« IETF on security considerations

113

1.0@security:Security_Considerations.pdf
https://datatracker.ietf.org/doc/html/rfc3552#page-26

« I[ETF on privacy considerations (guidelines)

» W3C security and privacy self-review questionnaire
« OAuth2 threat model (example)

» Threat modelling: Designing for Security

+ OWASP Threat modelling

+ Microsoft Threat modelling

17.2. Harms, Misuse, and Abuse

17.2.1. Introduction

The C2PA Guiding Principles establish that C2PA specifications shall be reviewed with a critical eye towards the
potential abuse or misuse of the framework to cause unintended harms, threats to human rights, or disproportionate

risks to vulnerable groups globally.

To ensure that the C2PA is meeting this aspect of its principles, the harms, misuse, and abuse assessment aims to
identify and address potential concerns during the specifications development and as encountered in subsequent

implementations.
In addition, the specifications are being reviewed to:

« Anticipate and mitigate potential abuse and misuse;
« Address common privacy concerns of its users; and

« Consider the needs of users and stakeholders throughout the world.

17.2.2. Considerations

The harms, misuse, and abuse assessment is an ongoing process. The information presented in the Harms Modelling
documentation should not be considered the end result of a comprehensive evaluation, but as a basis for ongoing
discussions centered on impacted communities, and aimed at mitigating potential abuse and misuse and protecting

human rights.
There are two critical aspects of the approach:

Ongoing
The harms, misuse, and abuse assessment necessarily accompanies the design and development, as well as
implementation and use-stages of the C2PA by continuously informing the specifications development process,
the implementation and user-experience guides, sensitization efforts, the governance of the Coalition and
potentially multilateral cooperation for the promotion of a diverse C2PA ecosystem that serves a broad range of

global contexts.

114

https://datatracker.ietf.org/doc/html/rfc6973#section-7
https://www.w3.org/TR/security-privacy-questionnaire/
https://datatracker.ietf.org/doc/html/rfc6819
https://shostack.org/books/threat-modelling-book
https://owasp.org/www-community/Threat_modelling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodelling
https://c2pa.org/principles/
1.0@security:Harms_Modelling.pdf
1.0@security:Harms_Modelling.pdf

Multi-disciplinary and diverse

The harms, misuse, and abuse assessment should be a collaborative effort that includes multi-disciplinary experts
and a broad range of stakeholders with lived, practical and technical experience of the issues from diverse

geographical locations, cultural backgrounds and individual identities.

17.2.3. Assessment

Harms modelling focuses on analysing how a socio-technical system might negatively impact users, other
stakeholders or broader society, or otherwise create or re-enforce structures of injustice, threats to human rights, or
disproportionate risks to vulnerable groups globally. The process of harms modelling systematically requires
combining knowledge about a system architecture and its user affordances with historical and contextual evidence
about the impact of similar existing systems on different social groups and participatory consultation with a range of
communities who may be implicated by the system. This combined information frames the ability to anticipate harm

and proactively identify responses.

The Harms Modelling documentation describes the framework and the process carried out to date, followed by the
methodology, an overview of the assessment, an outline for public review and feedback, and due diligence actions

being developed to accompany version 1.0 of these specifications, its implementations and evolution.

17.2.4. Due Diligence Actions

The harms, misuse and abuse assessment has informed, and should continue to inform, the development of the C2PA
technical specifications as well as its accompanying documentation:

 Guidance for implementers

+ User experience guidance

« Security Considerations

« Explainer
In addition, the harms, misuse and abuse assessment should inform the governance of the Coalition and guide
potential multilateral cooperation for the promotion of a diverse C2PA ecosystem that pushes for the optimization of

the benefits in terms of trust in media, user control and transparency that prompted the development of the C2PA

specifications.

115

1.0@security:Harms_Modelling.pdf
1.3@guidance:Guidance.pdf
1.4@ux:UX_Recommendations.pdf
1.0@security:Security_Considerations.pdf
1.3@explainer:Explainer.pdf

Chapter 18. C2PA Standard Assertions

18.1. Introduction

This section of the document lists the standard set of assertions for use by C2PA implementations, describing their
syntax, usage, etc. To keep things simple, all example JUMBF URIs have been shortened for illustrative purposes - full

URIs are necessary in the actual data.

All assertions shall have a label as described in Section 6.2, “Labels” and shall be versioned as described in Chapter 5,

Versioning.

All C2PA standardized assertions use the JSON JUMBF content type, the CBOR JUMBF content type, or the Embedded
File content type from ISO 19566-5:2023. Entity-specific assertions can be any of those, any of the other JUMBF
content types from ISO 19566-5:2023, Annex B (such as XML) or may create its own (as per the instructions in ISO
19566-5:2023, Table B.1). The Codestream content type shall not be used for a C2PA assertion.

Unless otherwise mentioned, all assertions documented in this standard set of assertions shall be serialized as CBOR.
All assertions that are serialized as CBOR shall comply with the Core Deterministic Encoding Requirements of CBOR
(see RFC 8949, clause 4.2.1) and their schemas shall be defined using a CDDL Definition.

NOTE All CDDLs are considered as non-normative.

For those defined using JSON, their schemas shall be defined using the latest version of JSON Schema.

18.2. Regions of Interest

18.2.1. Description

In some use cases, a given assertion, such as an actions assertion, may only be relevant to a specific portion of an
asset as opposed to the entire asset. In those cases, it is necessary to have a way to describe that region - whether it

be temporal, spatial, textual or a combination of them. A regon definition serves that purpose.

18.2.2. Common

The most important part of the region definition is the range field which is used to describe a temporal range, a

spatial range, a frame range, a textual range or a combination of them, for the region.

While the specification allows for specifying a combination of ranges, it is not defined how a Manifest
NOTE Consumer will use them. It is expected that the C2PA’s User Experience Task Force will take this up in

the future.

A region may also contain one of more common fields:

116

https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8610
https://json-schema.org/specification-links.html

name

a free-text string representing a human-readable name for the region which might be used in a user interface.

identifier
a free-text string representing a machine-readable, unique to this assertion, identifier for the region.
type

a value from a controlled vocabulary such as https://cv.iptc.org/newscodes/imageregiontype/ or an entity-specific

value (e.g., com. litware.newType) that represents the type of thing(s) depicted by a region.

description

a free-text string.

Older versions of this specification included a ro'le field. This field has been deprecated and shall no longer be

included when generating a region of interest.

18.2.2.1. Ranges

All ranges consist of a type field whose value is either "spatial”, "temporal", "frame", "textual" or "identified". In
addition, it shall contain one of the following fields whose data is an object consisting of the specific data for that
range:

« shape (for spatial);

« time (for temporal);

« frame (for temporal or textual);

« text (for textual);

« item (for specifically identified items).

18.2.2.2. Spatial

Spatial ranges are described using a shape object. A shape can be use to represent a rectangle, a circle or a polygon.
It is modelled on the Region Boundary Structure from the IPTC.

18.2.2.3. Temporal

Temporal ranges are described using a time object, which represents a range from a starting time to an ending time.
Times are described either using Normal Play Time (npt) as described in RFC 2326 (as recommended in W3C Media

Fragments specification), or a "Wall Clock Time" using the Internet profile of ISO 8601 as described in RFC 3339.

NOTE "Wall Clock Time" is useful in scenarios where the media asset represents activity that took place
during a specific date and time period, such as a news broadcast or a live event.

If no type field is provided, the range is assumed to be in npt format. If no start field is provided, the range shall

start at the beginning of the asset. If no end field is provided, the range shall end at the end of the asset. If neither is

117

https://cv.iptc.org/newscodes/imageregiontype/
http://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#region-boundary-structure
http://datatracker.ietf.org/doc/html/rfc2326
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://www.w3.org/TR/media-frags/#media-fragment-syntax
https://www.iso.org/iso-8601-date-and-time-format.html
http://datatracker.ietf.org/doc/html/rfc3339

provided, the range shall represent the entire asset.

18.2.2.4. Frames

A frame object defines a range using the starting and ending frames or pages (inclusive). If no start is provided, the
range shall start at the beginning of the asset. If no end is provided, the range shall end at the end of the asset. If
neither is provided, the range shall represent the entire asset.

Frames are represented as a single ordinal numbers, where 0 is the first frame.

While frames are typically used to represent page numbers of a document, such as PDF, they may have uses in other
media types, such as animation, video and audio. It is recommended that where possible, media types dealing with
regions of interest over time use tempora'l ranges instead.

18.2.2.5. Textual

A text object defines a range using a one or more URL fragment identifiers, as defined by the W3C Web Annotation
fragment selector. It may also refine the range using offsets to the starting and ending characters (inclusive). If no
startis provided, the range shall start at the beginning of the fragment. If no end is provided, the range shall end at
the end of the fragment. If neither is provided, the range shall represent the entire fragment.

When used singularly, the fragment entry of the text-selector-map represents the entirety of the specified
textual range. However, the text-selector-range-map supports a pair of text-selector-map objects. The
value of selector is the start of the range (or its entirely, if no end entry is present) and the value of end (if present)
represents the end of a contiguous range. In addition, multiple pairs may be used to represent a range that is not

contiguous.

18.2.2.6. Identified

An 1item object defines a a media track, media item, or other discrete content item in the asset, allowing the claim
generator to indicate assertions that apply to only a subset of the content carried in the asset’s file container. For
example, it could be used to indicate that only the audio track of a video file is relevant.

The media or content item is identified by an identifier string whose value should match the typical item
identification naming scheme in that specific container format. For example, the value of identifier should be
track_id for MP4 files, and item_ID for HEIF files. The value of the identifier is then provided in the value
field. For example, a value of 2 with an identifier of track_1idinan MP4 video file container would indicate an
assertion related to the second media track in the file (which could be the audio track).

Another use for identified ranges is to indicate a specific region by a known semantic value. For example, the
Foundational Model of Anatomy could be used to identify a specific region of a human body. In such a case, the
identifier shall be the URL or URI to where to locate the schema (though not necessary directly to a machine
readable one).

118

https://www.w3.org/TR/annotation-model/#fragment-selector
https://www.w3.org/TR/annotation-model/#fragment-selector
https://bioportal.bioontology.org/ontologies/FMA

18.2.3. Schema

The schema for this type is defined by the region-map rule in the following CDDL Definition:

region-map = {

"region": [1x Srange-map], ; definition of the range, one or more ranges

? "name": tstr .size (1..max-tstr-length), ; a free-text string representing a human-
readable name for the region which could be used in a user qinterface.

? "jidentifier": tstr .size (1..max-tstr-length), ; a free-text string representing a
machine-readable, unique to this assertion, identifier for the region.

? "type'": tstr .size (1..max-tstr-length), ; from a controlled list
? "role": $role-choice, ; DEPRECATED
? "description": tstr .size (1..max-tstr-length), ; human readable description of the
region
? "metadata": $assertion-metadata-map, ; additional information about the assertion
}
$range-choice /= "spatial" ; a range identified by physical area
$range-choice /= "temporal" ; a range identified by a time period
$range-choice /= "frame" ; a range identified by a series of frames or pages
$range-choice /= "textual" ; a range identified by a range of text
$range-choice /= "identified" ; a range identified by a specific identifier and value
range-map = {
"type'": $range-choice, ; either "spatial', "temporal", "frame'", "textual" or
"identified"
? "shape": S$shape-map, ; description of the shape of a spatial range
? "time": $time-map, ; description of the time boundaries of a temporal range
? "frame": S$frame-map, ; description of the frame boundaries of a temporal
range
? "text": $text-map, ; description of the boundaries of a textual range
? "item": $item-map, ; description of the boundaries of an identified range
}
coordinate-map = {
"x": float, ; coordinate along the x-axis
"y": float, ; coordinate along the y-axis
}
$shape-choice /= "rectangle" ; a rectangular shape
$shape-choice /= "circle" ; a circular shape
$shape-choice /= "polygon" ; a polygonal shape
$unit-choice /= "pixel" ; units are in pixels
S$unit-choice /= "percent" ; units are in percent of the total size

shape-map = {

"type'": $shape-choice, ; either "rectangle", "circle" or "polygon"

"unit": $unit-choice, ; either "pixel" or "percent"

"origin'": $coordinate-map, ; starting/origin coordinate of the shape.

? "width": float, ; width for rectangles, diameter for circles
(ignored for polygons)

? "height": float ; height for rectangles

? "dinside" : bool, ; inside or outside the shape, default is "true’

? "vertices": [1* $coordinate-map] ; remaining points/vertices of the polygon

}

; npt and utc start and end times have different regex formats
time-map = npt-time-map / wall-clock-time-map

119

https://datatracker.ietf.org/doc/html/rfc8610

npt-time-map = {
? "type'": "npt"; if not present, assume "npt" time map
? "start": tstr .regexp "A(?:(?:([01]2\d|2[0-3]):)?([0-5]?\d):)? ([0~
512\d) (\. (\d{1,93}))2?s", ; start time (or beginning of asset if not present).
? "end": tstr .regexp "A(?:(?2:([01]12\d|2[0-3]):)?([0-5]2\d):)? ([0~
512\d) (\. (\d{1,93}))2?s", ; end time (or end of asset 1if not present).
}

wall-clock-time-map = {

"type": "wallClock"; required to be present for "wall-clock" time map

? "start": tstr .regexp "A(\d{4})-(\d{2})-(\d{2})T(\d{2}): (\d{2}): (\d{2}) (\.\d+) 2 (([+-
J\d{2}:\d{2})|Z)$", ; start time (or beginning of asset if not present).

? "end": tstr .regexp "A(\d{4})-(\d{2})-(\d{2})T(\d{2}) : (\d{2}) : (\d{2}) (\.\d+) 2 (([+-
I\d{2}:\d{2})[Z)$", ; end time (or end of asset/live edge if not present).
}

; this can be used for either frames of a video or pages of a document
frame-map = {
? "start": int, ; start frame (or beginning of asset if not present).
? "end": int ; end frame (or end of asset if not present).

; this is modeled after the W3C Web Annotation selector model
text-selector-map = {

"fragment": tstr, ; fragment identifier, as per RFC3023 or ISO 32000-2, Annex O

? "start": int, ; start character offset (or beginning of fragment if not
present).

? "end": int ; end character offset (or end of fragment if not present).

}

; one or two text-selector-maps used to identify the range
text-selector-range-map = {

"selector": $text-selector-map, ; start (or only) text selector

? "end": Stext-selector-map ; if present, represents the end of the text
range

}

text-map = {
"selectors": [1x $text-selector-range-map] ; array of (possibly discontinuous) ranges
of text

}
item-map = {

"identifier": tstr .size (1..max-tstr-length), ; the container-specific term used
to identify ditems, such as "track_id" for MP4 or "item_ID" for HEIF

"value": tstr .size (1..max-tstr-length), ; the value of the didentifier, e.g.

a value of "2" for an ddentifier of "track_id" would imply track 2 of the asset

}

; These values are deprecated
$role-choice /= "c2pa.areaOfInterest" ; arbitrary area worth identifying
$role-choice /= "c2pa.cropped" this area is all that is left after a crop action

)
$role-choice /= "c2pa.edited" ; this area has had edits applied to it
$role-choice /= "c2pa.placed" ; the area where an ingredient was placed/added
$role-choice /= "c2pa.redacted" ; something in this area was redacted
$role-choice /= "c2pa.subjectArea" ; area specific to a subject (human or not)
$role-choice /= "c2pa.deleted" ; a range of information was removed/deleted
$role-choice /= "c2pa.styled" ; styling was applied to this area
$role-choice /= "c2pa.watermarked" ; watermarking was applied to this area for the

purpose of soft binding

120

18.2.4. Examples

A series of examples in CBOR diagnostic notation (RFC 8949, clause 8) are shown below:

// example of a combined temporal and spatial range in a video //

{
"region": [
{
"type": "temporal",
"time": {
lltypell: llnptll’
llstartll: lloll,
Ilendll: ll5-2ll
}
},
{
"type": "spatial",
"shape": {
"type'": "rectangle",
"unit": "pixel",
"origin": {
"x": 10.0,
"y": 10.0
},
"width": 200.0,
"height": 112.0
}
}
1,
"name": "Animated Logo",
"jdentifier": "logo-clip",
"description": "5.2 seconds of the opening animated logo, in a rectangle 10 pixels down

from the top and left, 200px by 112px"
}

// example of a textual range in a Word/DOCX file //
{

"region": [

{
"type": "textual",
"text" : {
"selectors" : [
[
{
"fragment" : "xpointer(/w:document/w:body/w:p/)"
}
]
]
}
1,
1,
"description": "AI assistant edited content"

}

// example of a textual range in a tagged PDF file //
{

"region": [

{
"type": "textual",
"text" : {
"selectors" : [

121

https://datatracker.ietf.org/doc/html/rfc8949

[

{
"selector" : {
"fragment" : "path=/Document/Sect[0]/P[3]",
"start" : 10,
"end" : 20
}
}
]
]
}
1,
1,
"description": "Redaction performed as per FOIA request"

}

// example of a textual range in a non-tagged PDF file //
// in this case, we can only specify a page & rectangular area //

{

"region": [

{
"type": "textual",
"text" : {
"selectors" : [
[
{
"selector" : {
"fragment" : "page=1,rect=10,10,450,500",
"start" : 10,
"end" : 20
}
}
]
]
}
},
1,
"description": "Redaction performed as per FOIA request"

}

// example of deletion of some pages from a PDF //
{

"region": [

{
"type": "frame",
"frame" : {
"start" : 27,
"end" : 30
}
Iy
1,
"description": "unnecessary pages removed before distribution"

}

// example of a range of cells in Excel //

{

"region": [

{
"type": "textual",
"text" : {
"selectors" : [
[
{

122

"selector" : {

"fragment" : "xpointer(Sheetl!A5:A10)",
}
}
1,
[
{
"selector" : {
"fragment" : "xpointer(Sheetl!B5:B10)",
}
}
]
]
}
1,
1,
"description": "applied some styling to a range of cells 1in Excel"
}
// example of a contiguous range of table cells //
{
"region": [
{
"type": "textual",
"text" : {
"'selectors" : [
[
{
"selector" : {
"fragment" : "xpointer(//table[1l]/tr[1]/td[2])",
1,
"end" : {
"fragment" : "xpointer(//table[1]/tr[1]/td[4])",
}
}
]
]
}
1,
1,
"description": "cleared some table cells"
}

// example of a range of a specific track of a video //

{

"region": [

{
"type": "temporal",
"time": {
l|type" 9 l|nptll 9
llstartll: "0"’
llendll: "5.2"
}
1,
{
"type": "didentified",
"item": {
"identifier": "track_id",
"Va-l.ue": "2"
}
}
1,
"description": "enhanced some of the audio track"

123

// example of specifying that the eyes were changed throughout the entire asset //
{

"region" : [
{
"type" : "temporal",
"time" : {},
Iy
{
"type" : "ddentified",
"item" : {
"jdentifier" : "https://bioportal.bioontology.org/ontologies/FMA",
"value" : "set of eyeballs"
1,
}
]
"description": "made sure he looks like he was sleeping during the entire meeting"

}

18.3. Metadata About Assertions

18.3.1. Description

In many cases, it is useful or even necessary to provide additional information about an assertion, such as the date
and time when it was generated or other data that may help Manifest Consumers to make informed decisions about

the provenance or veracity of the assertion data.

A Manifest Consumer is not required to read any portion of assertion metadata. It can choose which,
NOTE if any, fields it wishes to consume, perhaps even varying based on the assertion type to which it is

applied.
Below shows the core schemas used inside other assertions.
The CDDL Definition for the assertion-metadata-map ruleis found in CDDL for Assertion Metadata:

CDDL for Assertion Metadata

;Describes additional information about an assertion, including a hashed-uri reference to
it. We use a socket/plug here to allow hashed-uri-map to be used in individual files without
having the map defined in the same file
$assertion-metadata-map /= {

? "dateTime": tdate, ; The RFC 3339 date-time string when the assertion was
created/generated

? "reviewRatings": [1x rating-map], ; Ratings given to the assertion (may be empty)

? "reference": $hashed-uri-map, j;hashed_uri reference to another assertion that this
review is about

? "dataSource": source-map, ; A description of the source of the assertion data, selected
from a predefined list

? "localizations" : [1x localization-data-entry] ; localizations for strings in the
assertion
? "regionOfInterest" : $region-map ; describes a region of the asset where this assertion

is relevant

124

https://datatracker.ietf.org/doc/html/rfc8610

}

$source-type /= "signer"

$source-type /= "claimGenerator.REE"
$source-type /= "claimGenerator.TEE"
$source-type /= "localProvider.REE"
$source-type /= "localProvider.TEE"
$source-type /= "remoteProvider.lstParty"
$source-type /= "remoteProvider.3rdParty"
$source-type /= "humanEntry"

; the following two values of source-type are deprecated as of 2.0
$source-type /= "humanEntry.anonymous"
$source-type /= "humanEntry.identified"

; NOTE: an earlier version of this specification also included an "actors" field, however
this was removed in version 2.0.
source-map = {

"type'": $source-type, ; A value from among the enumerated list indicating whether the
source of the assertion is a claim generator running in a rich execution environment (REE),
a claim generator running in a trusted execution environment (TEE), a local data provider 1in
REE (e.g. the location API from a mobile operating system), a local data running in a TEE
(e.g. a trusted location trusted app from a chipset vendor), a remote data provider such as
a server (e.g. Google's geolocation API service), or entry by a human.

? "details": tstr .size (1..max-tstr-length), ; A human readable string giving details
about the source of the assertion data, e.g. the URL of the remote server that provided the
data
}

int-range = 1..5

Sreview-code /= "actions.unknownActionsPerformed"
$review-code /= "actions.missing"

$review-code /= "actions.possiblyMissing"
$review-code /= "depthMap.sceneMismatch"
$review-code /= "dingredient.modified"
$review-code /= "dingredient.possiblyModified"
$review-code /= "thumbnail.primaryMismatch"

; the following three values of review-code are deprecated as of 2.0
$review-code /= "stds.iptc.location.inaccurate"

$review-code /= "stds.schema-org.CreativeWork.misattributed"
$review-code /= "stds.schema-org.CreativeWork.missingAttribution"

rating-map = {

"value": dnt-range, ; "A value from 1 (worst) to 5 (best) of the rating of the item"

? "code": $review-code, ; A label-formatted string that describes the reason for the
rating

? "explanation": tstr .size (1..max-tstr-length), ; A human readable string explaining why
the rating is what it is

}

; The data structures used to store localization dictionaries
$localization-data-entry /= {

* $$language-string
}

language-string /= tstr .size (1..max-tstr-length)

An example in CBOR diagnostic notation (RFC 8949, clause 8):

125

https://datatracker.ietf.org/doc/html/rfc8949

"reference": {
"url": "self#jumbf=c2pa.assertions/c2pa.metadata",
"alg": '"sha256",
"hash": b64'ho0spQQLLlFTy/4Tp8Epx670E5QW5NWKNR+2b30KFXug="
b
"dataSource": {
"type": "localProvider.REE",

"details": "EXIF GPS data provided by operating system geolocation API"
}

In most cases, this assertion specific metadata will appear directly inside of other assertions (e.g., ingredients) as the
value of their metadata field. However, sometimes it is necessary or desirable to store the assertion metadata in a
separate, independent assertion metadata assertion, such as when an assertion is not in JSON or CBOR, such as
thumbnails.

The label for the assertion metadata assertionis c2pa.assertion.metadata.

18.3.2. Data Source

This dataSource field is an optional field that allows the claim generator to inform downstream Manifest
Consumers about the source from which the assertion contents originated. If no dataSource is provided for a given
assertion, the dataSourceis considered to be the signer.

By default, all created_assertions are attributed to the signer, as the Trust Model is rooted in
the trust of the signer, which is usually also the claim generator.

NOTE

The value of the field is a dataSource object that is composed of two fields: type and details.

The dataSource type field defines the type of the dataSource. It is assembled with labels in the format described in
Section 6.2, “Labels”. The value can be one of the following specification-defined values from Table 5, “Data source
types”, or entity-specific namespaces can be used as an extension mechanism.

Table 5. Data source types
Value of type Meaning
signer The assertion contents came from the signer

claimGenerator.REE Assertion contents came from a claim generator running in a rich execution environment
(REE), such as a desktop or mobile operating system

claimGenerator.TEE Agsertion contents came from a claim generator running in a trusted execution

environment (TEE), such as a trusted OS

LlocalProvider.REE Assertion contents came from a data source running in an REE on the same physical

computing device as the claim generator

126

Value of type Meaning

localProvider.TEE Assertion contents came from a data source running in a TEE on the same physical

computing device as the claim generator

remoteProvider Assertion contents came from a remote data source controlled by the signer or claim

generator vendor
remo’{eProv-l der.ext Assertion contents came from an external, remote data source that is not the signer or
erna .

claim generator vendor
humanEntry

Assertion contents were entered by a human

The detai'ls field is a human-readable string that provides additional information about the dataSource, e.g., the
name of the API used to provide the assertion contents, or the URL of the server from which the contents were
provided. For example, a broad location assertion source may have a type value of remoteProvider.3rdParty,
with the details value set towww. googleapis.com/geolocation/vl/geolocate.

18.3.3. Review Ratings

When present, the reviewRatings array provides a place for the claim generator to provide one or more rating
objects on the quality (or lack thereof) of an assertion. A reviewRatings shall not be present if a dataSource

object is present with a type field whose value s either humanEntry.anonymous or
humanEntry.credentialed.

The value field of the rating object shall be present with any integer value from 1 (worst) through 5 (best). If
present, the explanation field shall contain a human-consumable string description of the type of rating. In
addition, an optional machine-readable code field which defines assertion-specific evaluation outcome codes may
be provided. The value of the code field is defined using the same format described in Section 6.2, “Labels”. The
value can be one of the following specification-defined values from Table 6, “Values of code field”, or entity-specific
namespaces can be used as an extension mechanism.

Table 6. Values of code field

Value of code Applicable Assertion Meaning

actions.unknownAc c2pa.actions

- The actions assertion does not contain a full list of all actions
tionsPerformed

performed in the authoring tool (e.g., because of the use of a 3rd

party filter whose effect is unknown to the authoring tool).

actions.placedIng c2pa.actions

! The actions assertion being reviewed has a placed action
redientNotFound

without a resolvable ingredient URI. value should be 1.

ingredient.action c2pa.ingredient

RN The ingredient assertion being reviewed does not have at least
Missing

one action that references it in its claim. value should be 1.

ingredient.notVis c2pa.ingredient

ot The ingredient assertion being reviewed is not visible in the
ible

digital content bound to that manifest. value should be 1.

127

Value of code Applicable Assertion Meaning

deptEMap .sceneMis Czﬁa -depthmap.GDe The contents of the depth map assertion do not correspond to
matc t
P the scene portrayed in the primary presentation in the asset

(e.g., because of a picture-of-picture attack).

thumbnail.primary c2pa.thumbnail.cl Thethumbnail’s contents do not match the contents of the

Mismatch aim . .
primary presentation in the asset.

18.3.4. References

Because the reference field of the assertion metadata assertion is a standard hashed_uri, it is also possible to have
an assertion metadata assertion refer to assertions in other manifests than the active one. For example, the active
manifest may include an assertion metadata assertion that validates the c2pa.metadata assertion present

in an ingredient’s manifest.

NOTE Since the claim is a special type of assertion, this same method can be used to refer to claims in other
manifests.

18.3.5. DateTime

If a dateTime field is present, its value shall be a date time string that complies with CBOR date/times (RFC 8949,
3.4.1).

18.3.6. Region of Interest

The assertion may be specific to only a portion of an asset - such as a range of frames in a video or a specific area on
animage. Such a portion may be identified usinga regionOfInterest field, whose value is a region-map object
(as defined in Section 18.2, “Regions of Interest”).

18.3.7. Localization

18.3.7.1. General

It is important that consumers of C2PA manifests be able to understand the information in their native language,
when possible. To this end, it is possible to add localization information for an assertion with a dictionary that is

included in the assertion’s metadata.

18.3.7.2. Localization Dictionary

A localization dictionary shall consist of a single object, where each of its keys represent the translations using the
language indexing technique from JSON-LD. If the value that requires translation is not associated with a top-level
key, then "dot notation" (.) shall be used to reference keys nested in objects. Array indexing notation ([n], n>=0)
shall be used where a specific element in an array needs to be traversed. When the value requiring translation is itself

an array, a specific element may be referenced. Some examples are shown in Example 4, “Examples of Localization

128

https://datatracker.ietf.org/doc/html/rfc8949
https://www.w3.org/TR/json-ld/#language-indexing

Dictionaries”:

Example 4. Examples of Localization Dictionaries

{
"de:title": {
"en-US": "Kevin's Five Cats",
"en-GB": "Lord Kevin's Five Cats",
"es-MX": "Los Cinco Gatos de Kevin",
"es-ES": "Los Thinco Gatos de Kevin",
"fr": "Les Cing Chats de Kevin",
"jp": "I D5 LEOE"
}
}
{
"actions[0].softwareAgent": {
"en-US": "Joe's Photo Editor",
"en-GB": "Joe's Photo Editor",
"es": "Editor de fotos de Joe",
"fr": "|'éditeur de photos de Joe",
"jp": "3 —DEEEEE"
}
}

Any such 3rd party keys or values are required to be namespaced in the same way as Section 6.2.1, “Namespacing”,
e.g. com. Llitware. In order for a Manifest Consumer to display human-readable information about these keys and
values, the claim generator should provide the strings via this localization approach.

Localized Actions shows its use in localizing custom actions, by using it in the assertion metadata of a
c2pa.actions assertion.

Localized Actions

"com. litware.blur": {
"en-US": "Blur",
"fr-FR": "Brouiller",

1,

"com. litware.filter": {
"en-US": "Filter",
"es-ES": "Filtrar",
"jp—JP": nj/rjbgfn

}

}

18.4. Standard C2PA Assertion Summary

The standard C2PA assertions are listed in Table 7, “Standard C2PA assertions”:

129

Table 7. Standard C2PA assertions

Type

Actions

Assertion Metadata
Asset Reference

Asset Type

BMFF-based Hash

Certificate Status

Cloud Data

Collection Data Hash

Data Hash

Depthmap

Embedded Data

Font Information
General Box Hash

Ingredient

Metadata
Multi-Asset Hash
Soft Binding

Thumbnail

Time-stamps

Assertion

c2pa.actions, c2pa.actions.v2
c2pa.assertion.metadata
c2pa.asset-ref

c2pa.asset-type (deprecated), c2pa.asset-

type.v2

c2pa.hash.bmff (removed),
c2pa.hash.bmff.v2 (deprecated),
c2pa.hash.bmff.v3

c2pa.certificate-status
c2pa.cloud-data
c2pa.hash.collection.data
c2pa.hash.data

c2pa.depthmap.GDepth

c2pa.embedded-data

font.info
c2pa.hash.boxes

c2pa.ingredient, c2pa.ingredient.v2,

c2pa.ingredient.v3
c2pa.metadata
c2pa.hash.multi-asset
c2pa.soft-binding

c2pa.thumbnail.claim (claim creation time),
c2pa.thumbnail.ingredient (importing an
ingredient)

c2pa.time-stamp

18.5. Data Hash

130

Schema
C2PA
C2PA
C2PA

C2PA

C2PA

C2PA
C2PA
C2PA
C2PA

https://developers.go
ogle.com/depthmap-
metadata/reference

C2PA

C2PA
C2PA

C2PA

C2PA
C2PA
C2PA

C2PA

C2PA

Serialization
CBOR
CBOR
CBOR

CBOR

CBOR

CBOR
CBOR
CBOR
CBOR

CBOR

JUMBF Embedded
File

CBOR
CBOR

JUMBF Embedded
File

JSON-LD
CBOR
CBOR

Embedded File

CBOR

https://developers.google.com/depthmap-metadata/reference
https://developers.google.com/depthmap-metadata/reference
https://developers.google.com/depthmap-metadata/reference

18.5.1. Description

The most common way to uniquely verify the integrity of portions of a non-BMFF-based asset is via the hard bindings
(i.e., cryptographic hash) present in data hash assertions. However, for those formats that are "box like" but not

compatible with BMFF, the general box hash assertion is recommended.

The data hash assertion supports the creation and storage of hashes as described in Section 13.1, “Hashing”, and the

value shall be present in the hash field.

Each data hash assertion defines a specified range of bytes over which the hash has been computed. If only a portion
of the asset shall be hashed, then the range(s) to be excluded shall be present in the array value of the exclusions

field. These excluded ranges shall be ordered by increasing start position and shall not overlap.

For data hash exclusion ranges, the range shall begin and end within the same logical unit (e.g., box, segment, object)
and shall not overlap with any header or length field associated with that unit, except for freebox or pad data. It is the
responsibility of the claim generator to define exclusion ranges in a way that ensures that whatever data an attacker
might place in those ranges cannot materially affect the interpretation of the asset. Furthermore, the claim generator
shall ensure the exclusion range only contains content from C2PA Manifest Store, or asset metadata (e.g., EXIF, IPTC
metadata). Example metadata that could be skipped can be unverified user name or image rotation information.

A previous version of this specification provided a ur1 field to provide a pointer to where the hashed data can be
located, but it was never used. This field is now deprecated in favour of the asset reference assertion. Claim
generators shall not add this field to a data hash assertion, and consumers shall ignore the field when present, except
this shall not affect inclusion of the field as part of the content being validated as described in Section 15.10.3,

“Assertion Validation”.

A data hash assertion shall have a label of c2pa.hash.data.

A data hash assertion shall not appear in a cloud data assertion.

A data hash assertion shall not be used with a compressed manifest.

NOTE This restriction exists to address a technical incompatibility between the two.

18.5.2. Schema and Example

The schema for this type is defined by the data-hash-map rule in the following CDDL Definition:

; Also check optionality within the hash-map
; The data structure used to store the cryptographic hash of some or all of the asset's data

; and additional information required to compute the hash.
data-hash-map = {

? "exclusions'": [1* EXCLUSION_RANGE-map], ; Ranges have monotonically dincreasing ‘start’
values, and no two ranges may overlap.

? "alg":tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash in this assertion, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the “alg value of the

131

https://datatracker.ietf.org/doc/html/rfc8610

enclosing structure. If both are present, the field in this structure is used. If no value
is present in any of these places, this structure 1is invalid; there is no default.

"hash": bstr, ; byte string of the hash value

"pad": bstr, ; zero-filled byte string used for filling up space

? "pad2": bstr, ; optional zero-filled byte string used for filling up space

? "name": tstr .size (1..max-tstr-length), ; (optional) a human-readable description of
what this hash cover

? "url": uri, ; Unused and deprecated.

}

EXCLUSION_RANGE-map = {
"start": uint, ; Starting byte of the range
"length": uint, ; Number of bytes of data to exclude
}

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

{
"alg" : "sha256",
"pad" : '0000',
"hash": 'Auxjtmax46cC2N3Y9aFmB09Jfay8LEwIWzBUtZOSUM8gA=",
"name": "JUMBF manifest"
"exclusions": [
{
"start": 9960,
"length'": 4213
}
1,
}

Normally, the start and length values of an exclus-ion shall be written in their preferred serialization (i.e., "as
short as possible"). However, when a data hash assertion needs to be created but the start and length values are
not yet known, they shall be created "as large as possible", which would be as a 32-bit integer.

The pad value shall always be present but shall be a zero-filled byte string of length 0 unless used to replace (i.e.,
"pad") bytes during multiple pass processing. pad2 is an optional zero-filled byte string that is used if the desired
padding cannot be achieved with pad.

NOTE Section 10.4, “Multiple Step Processing” describes how to fill in the correct values and adjust the
padding.

18.5.3. Special consideration for JPEG 1

When hashing a JPEG 1 (.jpg) file into which the C2PA Manifest will be embedded, the APP11 marker (FFEB) and the
segment’s length (Lp) of all APP11 segments containing the JUMBF data shall be included in the exclusion range.

NOTE All the APP11 segments containing the C2PA Manifest JUMBF are contiguous so that only a single
range is required.

132

https://datatracker.ietf.org/doc/html/rfc8949

18.5.4. Special consideration for PNG

When hashing a PNG (.png) file into which the C2PA Manifest will be embedded, it is important that the Length and
the 'caBX' (representing the chunk type) of the chunk containing the JUMBF data be included in the exclusion

range.

18.6. BMFF-Based Hash

18.6.1. Description

Portion(s) of a BMFF-based asset that a claim generator wishes to uniquely identify with a hard binding (i.e.,
cryptographic hash) shall be described using BMFF-based hash assertions.

A BMFF-based hash assertion shall have a label of c2pa.hash.bmff.v3.

NOTE Earlier versions of this standard also documented c2pa.hash.bmff and c2pa.hash.bmff.v2
assertions.

Validators shall ignore any c2pa.hash.bmff assertions, processing the manifest as if the
IMPORTANT .
assertion were not present.

A BMFF-based hash assertion shall not appear in a cloud data assertion.

A previous version of this specification provided a url field to provide a pointer to where the hashed data can be
located, but it was never used. This field is now deprecated in favour of the asset reference assertion. Claim
generators shall not add this field to a BMFF hash assertion, and consumers shall ignore the field when present,
except this shall not affect inclusion of the field as part of the content being validated as described in Section 15.10.3,

“Assertion Validation”.

18.6.2. Hash Computation

To compute the hash specified in the value field of a BMFF hash, all bytes of the file are added to the hash excluding

those BMFF boxes or subset[s] thereof which match any exclusion entry in the exclusions array.

Boxes that are included in their entirety also include their box headers in the input data contributed to the hash.
Similarly, boxes that are excluded in their entirety also exclude their box headers from the input data contributed to
the hash. When a box is partially excluded from the input data contributed to the hash through the use of a subset
field in the exclusion specification, the portion(s) of the box to be excluded defined by the relative byte offsets in the
subset field are offsets from the start of the box including the box headers, not offsets from the start of the box’s

content. These subset ranges shall be ordered by increasing of fset value and shall not overlap.

Inac2pa.hash.bmff.v2 (deprecated) and c2pa.hash.bmff.v3 assertion, for any root box not excluded in its
entirety, the input data contributed to the hash for that box is comprised of the concatenation of the binary strings
offset || data,where offset is defined as the absolute file offset of the box as an 8-byte integer in big-endian
format, and data is defined as the box’s contents, including headers, minus any exclusions. In this definition, "||"

133

represents the binary concatenation of the two. The offset shall not be included for Merkle tree hashes when the bmff-

hash-map includes both the hash and merk'e fields.

In addition, c2pa.hash.bmff.v2 (deprecated) and c2pa.hash.bmff.v3 assertions include the following

features:

The absolute file byte offset is included at the start of the input data contributed to the hash for any root box. This
ensures that a root box included in the hash cannot change positions in the file.

The mdat box is no longer excluded in its entirety when the bmff-hash-map includes both the hash and merkle
fields. Instead, a mandatory entry on the exclusion list excludes most of the box.

These two features ensure that the mdat cannot change positions in the file while also eliminating

NOTE the need for the offset for each individual Merkle tree hash when the bmff-hash-map includes both

the hash and merke fields.

A box matches an exclusion entry in the exclus-ions array if and only if all of the following conditions are met:

The box’s location in the file matches the exclusions—-map entry’s xpath field. For example, exclusion xpath
/foo/bar[2] would match locations /foo[3]/bar[2] and /foo[2]/bar[2], but not
/foo[3]/bar[1] or /foo[3]/bar[2]/baz[1].

If Length is specified in the exclusions-map entry, the box’s length exactly matches the exclusions-map
entry’s Length field. Note: The length includes the box headers.

If version is specified in the exclusions—-map entry, the box is a FullBox and the box’s version exactly

matches the exclusions—map entry’s version field.

If flags (byte array of exactly 3 bytes) is specified in the exclusions—map entry and the box is a FullBox. If
exact is set to true or not specified, the box’s flags (bit(24), i.e., 3 bytes) also exactly matches the exclusions-
map entry’s flags field. If exact is set to false, the bitwise-and of the box’s flags (bit(24), i.e., 3 bytes) with the
exclusions-map entry’s flags field exactly matches the exclusions-map entry’s flags field (i.e., the

box has at least those bits set but may also have additional bits set).

If data (array of objects) is specified in the exclusions—map entry, then for each item in the array, the box’s
binary data at that item’s relative byte of fset field exactly matches that item’s by tes field.

The xpath field’s string syntax shall be limited to the following strict subset.

134

Only abbreviated syntax shall be used.

Only full paths shall be used.

Only node selection via node or node[integer] shall be used.
Descendent syntax, i.e., / /, shall NOT be used.

All nodes shall be BMFF 4cc codes.

Example 5. Complete Syntax for xpath Field

xpath
nodes

'/' nodes
node
node '/' nodes
node = box4cc
| box4cc '[' dnteger ']'

Where:
box4cc is any 4cc allowed by ISO/IEC 14496-12 for a BMFF box.
integer is any non-zero positive integer with no leading zeros.

Any given exclusion entry may match zero or more boxes. It is not required that an exclusion entry match exactly one

box.

A non-leaf xpath node shall only point to a container box that has no fields of its own (i.e., contains no data, only child
boxes) and that does not inherit from FullBox. This ensures that a C2PA validator does not need to be aware of the
syntax and semantics of unusual boxes that contain other boxes. If a child box of such an unusual box needs to be
excluded in full or in part, the exclusions—map entry’s xpath field shall point to the unusual box itself and the
subset-map field shall exclude the byte range(s) containing the excluded child box data. For example, the 'sgpd'
box contains other boxes but is unusual in that it inherits from FullBox; as such, if excluding child box(es), in whole or
in part, from 'sgpd' is required, the assertion shall use an xpath field pointing to the 'sgpd"' itself (e.g.,
/moof/traf/sgpd)and shall use the subset-map field to exclude the desired bytes.

If the C2PA Manifest is embedded into the file, the box containing it shall be one of the entries in the exclusions

array. Refer to Section A.5, “Embedding manifests into BMFF-based assets” for more information.

If a non-root excluded box is removed after the C2PA Manifest is created it shall be replaced with a ' free' box of the
same size to ensure that the input data contributed to the hash for other boxes are not invalidated. If C2PA Manifest
store size is reduced by using compressed manifest after the C2PA Manifest is created, a ' free' box shall be inserted
in its place to ensure the offsets remain the same. If it is expected that a non-root excluded box may be added after
the C2PA Manifest is created, then at manifest creation time, a ' free' box shall be inserted with sufficient space for
the excluded box and that ' free' box shall also be excluded by an exclusion entry using its full xpath. When the
excluded box is added or the C2PA Manifest store size is increased, the ' free' box shall be shrunk (or removed) to
compensate for the added data. However if there is insufficient space in the ' free' box, a standard manifest shall
be used.

Embedding C2PA data into a BMFF-based asset via MP4 boxes changes file offsets in other MP4 boxes as well as the
absolute file byte offsets being included in the input data contributed to the hash for any root box. Those boxes and
offsets shall be included in the input data contributed to the hash with their post-embed values, not their pre-embed

values, or the BMFF-based hash assertion will not validate.

There are three possible ways an implementation can ensure that post-embed values for all file byte offsets are
hashed:

1. Use 'free' boxes.

135

a. Determine reasonable maximum size(s) for the C2PA box(es) which will be embedded. All MP4 boxes for C2PA
support unused padding bytes at the end, so it is fine to overestimate the size for the ' free' boxes because
any extra bytes will be ignored.

b. Insert ' free' box(es) of said size(s) into the asset file(s) and update all offsets appropriately.
c. Perform hashing of the asset with "/free" on the exclusion list.
d. Create and sign the manifest. Create the C2PA box(es).
e. Overwrite the ' free' box(es) with the C2PA box(es).
2. Use a two-pass approach.

a. Compute the exact sizes of the BMFF-based hash assertion and the merkle box(es) if any. The latter will

require parsing the asset file(s) to determine the size of the Merkle tree.
b. Compute the exact size of the final manifest.

c¢. Perform hashing of the asset file(s). Update any box that includes any file offsets to correct values before
including that box in the input data contributed to the hash. Compute the input data contributed to the hash
using (offset || data) using the updated absolute file offset as described above. As indicated above,
the offset is not included in the data contributed for Merkle tree hashes when the bmff-hash-map includes
both the hash and merke fields.

d. Create and sign the manifest. Create the C2PA box(es).
e. Insert the C2PA box(es).
3. Place updated Manifest Store at end of BMFF file.
a. Set original manifest store box_purpose frommanifesttooriginal.
b. Create and sign the manifest.
c. Create C2PA ContentProvenanceBox with box_purpose setto update.
d. Insert updatedManifest into C2PA ContentProvenanceBox.
e. Insert the C2PA ContentProvenanceBox at end of BMFF file.

f. If a standard manifest is added when an update manifest store is present, the update manifest store contents

are moved to the 'original' manifest.

g. The updated manifest store is then removed from the end of the file, allowing backward compatibility with a

single manifest for common use-cases.

h. The 'original' manifest store box_purpose is changed back to manifest and the standard manifest is
added as normal.

The box_purpose field is not included within the hash and can change without invalidating any
NOTE existing hash. Likewise, appending the new C2PA ContentProvenanceBox is not invalidating existing
hashes.

While the two-pass approach method is significantly more complex, it does enable correct hashing without any

136

foreknowledge of the maximum manifest size. It also minimizes the final asset’s size. Common boxes (not exhaustive)

with file offsetsinclude 'iloc', 'stco', 'co64', 'tfhd"', 'sidx',and 'saio'.

The option of placing updated Manifests at the end of the BMFF file allows updates when there is not a large enough
"free' box or when the two-pass approach complexity is not desired. This option also supports chunk offsets in
atom 'stco' boxes with partial data offset information.

18.6.3. Schema and Example

The schema for the c2pa.hash.bmff.v2 (deprecated) and c2pa.hash.bmff.v3 assertions are defined by the
bmff-hash-map rulein the following CDDL Definition:

bmff-hash-map = {

"exclusions": [1*x exclusions-map],

? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute this hash, taken from the C2PA hash algorithm didentifier list. If
this field is absent, the hash algorithm is taken from an enclosing structure as defined by
that structure. If both are present, the field 1in this structure is used. If no value is
present in any of these places, this structure is invalid; there is no default.

? "hash": bstr, ; For non-fragmented MP4, this is the hash of the entire BMFF file
excluding boxes listed in the exclusions array. For fragmented MP4, this field is required
to be absent.

? "merkle": [1x merkle-map], ; A set of Merkle tree rows and the associated data required
to enable verification of a single 'mdat' box, multiple 'mdat' boxes, and/or -individual
fragment files within the asset.

? "name'": tstr .size (1..max-tstr-length), ; optional) a human-readable description of
what this hash covers.

? "url": uri, ; Unused and deprecated.

}

; (optional) CBOR byte string of exactly 3 bytes.
flag-type = bytes

flag-t = flag-type .eq 3

exclusions—-map = {

"xpath": tstr, ; Location of box(es) to exclude from the hash starting from the root node
as an xpath formatted string of version https://www.w3.org/TR/xpath-10/ with highly
constrained syntax.

? "length": uint, ; (optional) Length that a leafmost box must have to exclude from the
hash.

? "data": [1* data-map], ; (optional) The data in the leafmost box at the specified
relative byte offset must be identical to the specified data for the box to be excluded from
the hash.

? "subset":[1*x subset-map], ; (optional) Only this portion of the excluded box 1is excluded
from the hash. Each entry 1in the array must have a monotonically increasing relative byte
offset. No subset within the array may overlap. The last entry may have a length of zero;
this indicates that the remainder of the box from that relative byte offset onward is
excluded. A relative byte offset or relative byte offset plus length that exceeds the
length of the box 1is allowed; bytes beyond the end of the box are never hashed.

? "version": 1int, ; (optional) Version that must be set in a leafmost box for the box to
be excluded from the hash. Only specified for a box that inherits from FullBox.

? "flags": flag-t, ; (optional) byte string of exactly 3 bytes. The 24-bit flags that
must be set in a leafmost box for the box to be excluded from the hash. Only specified for
a box that inherits from FullBox.

? "exact": bool, ; (optional) indicates that flags must be an exact match. If not
specified, defaults to true. Only specified for a box that inherits from FullBox and when

137

https://datatracker.ietf.org/doc/html/rfc8610

flags is also specified.

}

data-map = {
"offset": uint,
"value" : bstr,

}

subset-map = {
"offset": uint,
"length": uint,

}

; Each entry in a map is a Merkle tree rows and the associated data required to enable
validation of a single

; 'mdat' box or multiple 'mdat' boxes within the asset.",

merkle-map = {

"uniqueId": int, ; l-based unique id used to differentiate across files to determine which
Merkle tree should be used to validate a given 'mdat' box.

"localId": int, ; A local id indicating Merkle tree.

"count": int, ; Number of leaf nodes in the Merkle tree. Null nodes are not included 1in
this count.

? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hashes in this Merkle tree, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the “alg’ value of the
enclosing structure as defined by that structure. If both are present, the field in this
structure is used. If no value 1is present in any of these places, this structure s 1invalid;
there is no default.

? "initHash": bstr, ; For fragmented MP4 assets which are split across multiple files,
this field is required to be present and is the hash of the entire initialization segment
file for chunks hashed by this Merkle tree excluding boxes listed in the exclusions array.
For fragmented MP4 assets which are stored as a single flat MP4 file, this field is required
to be present and is the hash of all bytes preceding the first 'moof' box excluding boxes
listed in the exclusions array. For non-fragmented MP4, this field is required to be
absent.

"hashes": [1* bstr], ; An ordered array representing a single row of the Merkle tree which
may be the leaf-most row, root row, or any intermediate row. The depth of the row is
implied by (is computed from) the number of items in this array.

? "fixedBlockSize": uint, ; For non-fragmented MP4 assets where the mdat box is validated
piecewise, this field can be present. This field is the non-negative size in bytes of a
given leaf node in the Merkle tree. For fragmented MP4, this field is not present.

? "variableBlockSizes": [1x 1int], ; For non-fragmented MP4 assets where the mdat box is
validated piecewise, this field can be present. Each entry in the array corresponds to the
non-negative size in bytes of a given leaf node in the Merkle tree. The number of elements
is equal to “count’ and sum of the values 1is equal to size of payload of mdat. For
fragmented MP4, this field is not present.

}

An example in CBOR diagnostic notation (RFC 8949, clause 8) for a monolithic MP4 file asset where the mdat box is
validated as a unit is shown below:

{
"hash": b64'EiAuxjtmax46cC2N3Y9aFmBO9Jfay8LEwIWzBUtZOsSUM8gA=",
"name'": "Example "c2pa.hash.bmff.v2® assertion",
"exclusions": [
{
"data": [
{
"value": b64'2P7D1hsOSDyS1l1goh37EgQ==",
"offset": 8

138

https://datatracker.ietf.org/doc/html/rfc8949

1,

"xpath":
i
{

"xpath":
b
{

"xpath":
1,
{

"xpath":
},
{

"xpath":

"data": [

{
"valu
"offs
}

]

}

"/uuid"

"/ftyp"

"/mfra"

"/moov[1l]/pssh"

"/emsg"’

e": b64'r3avWCpXHkmKHATFsVOQ5g==",
et": 20

An example in CBOR diagnostic notation (RFC 8949, clause 8) for an asset composed of fragmented MP4 files is shown

below:

{
"alg": "sha25

"name'": "Exam
"merkle": [
{
"count":
"hashes":
b64 "'HVWZOXKM kS
"localId"
"initHash
"uniqueId
},
{
"count":
"hashes":

b64'9Zk7Eox+RIq
b64'mTsSjH5EmruU
b64'mTsSjH5EmruU

6"’
ple “c2pa.hash.bmff.v3" assertion for fMP4",

23,

[b64'HVWZOxKMfkSatRAygs8DIfnEECN/G1BNi1359NdIDxbQ="
atRAygs8DIfnEECN/G1BNi359NdIDxbQ=" 1],

1 19,
": b64'HfOIgegqbLOM+FTTLpUWwWSDGR8pVvhURIAlwvaXjQoqGY="
"oo17

69,

[b64'9Zk7Eox+RIqLEDKCZwML1+cQRw38bUE2LfnO10gPFtBO="
1EDKCzwM1+cQRw38bUE2Lfn010gPFtBO=",
QMOLPAYX5xBHDfxtQTYt+fTXSASWOHTO=",
QMOLPAYX5xBHDfxtQTYt+fTXSASWOHFO=",

b64' OxKMfkSatRAygs8DIFnEECN/G1BNi359NdIDxbQd/Qg=" 1,

"localId"
"initHash
"uniqueld
1,
{

: 38,
": b64'HfOIgegbLOm+FTTLpUWWSDGR8pVvhUR1AlwvaXjQoqGy="
" 34

"count": 46,

[b64'OxKMfkSatRAygs8DIFnEECN/G1BNi359NdIDxbQd/Qg=" 1,

: 57,

)

)

)

b

"initHash": b64'HfOIgeqbLOM+FTTLpUWwWSDGR8pVhURLAlwvaXjQoqGyY=",

"hashes":
"localId"
"uniqueld
}
1,
"exclusions'":
{

We Bl

[

139

https://datatracker.ietf.org/doc/html/rfc8949

140

"data": [

"value": b64'2P7D1hsOSDyS1l1goh37EgQ==",

"value": b64'UAIXD79S1kGIOrfnmcsqTUA==",

{
"offset": 8
}
1,
"xpath": "/uuid"
1,
{
"Xpathll : ll/ftyp"
1,
{
"xpath": "/mfra"
1,
{
"xpath": "/moov[1l]/pssh"
1,
{
"data": [
{
"value": b64'9Q==",
"offset": 5
},
{
"offset": 20
1,
{
"value": b64'OxKM',
"offset": 70
}
1,
"flags": b64'ZDNx',
"xpath": "/emsg",
"length": 200,
"subset": [
{
"length": 7,
"offset": 5
1,
{
"length": 28,
"offset": 20
1,
{
"length": 63,
"offset": 45
1,
{
"length": 112,
"offset": 80
}
1,
"version": 1
}

"alg": '"sha256",

"name'": "Example ‘c2pa.hash.bmff.v3® assertion for

"merkle": [

non-fragmented MP4",

{

"count":

3,

"hashes": [b64'HvWZOXxKMfkSatRAygs8DIfnEEcN/G1BNi359NdIDxbQ=",
b64'HVWZOxKMfkSatRAygs8DIfnEECN/G1BNi359NdIDxbQ=" 17,

"variableBlockSizes": [100, 30, 20],

"localld": 19,

"initHash": b64'HfOIgeqbLOM+FTTLpUWwWSDGR8pVvhURIATwvaXjQoqGyY=",

"uniqueId": 17

}
1,
"exclusions": [
{
"data": [
{
"value'": b64'2P7D1hs0OSDyS1l1goh37EgQ==",
"offset": 8
}
1,
"xpath": "/uuid"
1,
{
lepathll: ll/ftypll
},
{
"xpath": "/mfra"
},
{
"xpath": "/moov[1l]/pssh"
1,
{
"data": [
{
"value": b64'9Q==",
"offset": 5
1,
{
"value": b64'UAIXD79S1kGOrfnmcsqTUA==",
"offset": 20
},
{
"value": b64'OxKM',
"offset": 70
}
1,
"flags'": b64'ZDNx',
"xpath": "/emsg",
"length": 200,
"subset": [
{
"length": 7,
"offset": 5
1,
{
"length": 28,
"offset": 20
1,
{
"length": 63,
"offset": 45
1,
{

"length": 112,
"offset": 80

141

A pseudo-code implementation of this algorithm is in Example 6, “Pseudo-code for BMFF-based hash assertion”.

+
15

"version": 1

)

Example 6. Pseudo-code for BMFF-based hash assertion

offset = 0
While (offset < length of file)
Starting at offset, locate the first byte of the first box that matches any entry
in the exclusions array, call this first_excluded_byte
If no such box is found, set first_excluded_byte = length of file
Determine the length of that box, call this excluded_byte_count
If no such box was found, set excluded_byte_count = 0
To the hash, add all bytes between offset and first_excluded_byte minus one
(inclusive)
If first_excluded_byte < length of file and there exists a subset array within the
exclusion that determined the value of first_excluded_byte
set next_included_begin = first_excluded_byte
For each entry in the subset array within the exclusion that determined the
value of first_excluded_byte
Set next_excluded_begin = this subset array entry's offset field plus
first_excluded_byte
If next_excluded_begin > next_included_begin
To the hash, add all bytes between next_included_begin and
next_excluded_begin minus one (inclusive)
Set next_included_begin = this subset array entry's length field plus
next_excluded_begin
If next_included_begin < first_excluded_byte + excluded_byte_count
To the hash, add all bytes between next_included_begin and
first_excluded_byte + excluded_byte_count minus one (inclusive)
Set offset = first_excluded_byte + excluded_byte_count

A example of generating a hash for the Merkle map is in Example 7, “A suggested example of a merkle map”.

Example 7. A suggested example of a merkle map

142

If the fields "“fixedBlockSize® and “variableBlockSizes are not present
To the hash, add all bytes between begin_address and last address of mdat payload
If the "fixedBlockSize' field is present and the ‘variableBlockSizes' field is not
present
While (1)
next_address = begin_address + fixedBlockSize
If next_address > last address of the mdat payload
next_address = last address of the mdat payload plus one
hash_complete = true
To the hash, add all bytes between begin_address and next_address minus one
(inclusive)
If hash_complete s true
break
begin_address = next_address

If the “variableBlockSizes™ field is present and the " fixedBlockSize field is not
present
For (blockSize in variableBlockSizes)
next_address = begin_address + blockSize
If next_address > last address of the mdat payload
next_address = last address of the mdat payload plus one
hash_complete = true
To the hash, add all bytes between begin_address and next_address minus one
(inclusive)
If hash_complete s true
break
begin_address = next_address

18.6.4. Exclusion list profiles

18.6.4.1. General

This section describes a set of pre-defined, named, profiles of extensions lists.

18.6.4.2. Basic profile

Typical untimed media (e.g., still photos) and timed media (e.g., videos with or without audio tracks, whether
fragmented or not) need only include the mandatory exclusions listed in Exclusion List Requirements.

18.6.5. Fragmented BMFF Entity Diagram

Figure 15, “Fragmented BMFF Entity Diagram” shows the relationship for C2PA objects comprising a fragmented BMFF
manifest.

143

144

Track #n Initialization Segment

c2pa_specific_box
box with purpose "manifest"

Content

contains

Manifest Store

ActiveManifest

IngredientManifests

contains
Manifest
AssertionStore
Claim
ClaimSignature
contains

Assertion

Data
Metadata ?
Track #n Fragment #m
ific b Use the uniqueld and localld to find
contains c2pa_specific_box . . the correct merkle-map from the
box with purpose "merkle c2pa.hash.bmff merkle array.
Content -
-
-
-
-
-
contains e
-
Y L7
v @@ P
c2pa.hash.bmff
bmff-merkle-map - - -

exclusions \/ The location identifes which Merkle tree
-- uniqueld leaf corresponds to this fragment.

alg

--- localld) ;
hash When hashes are present it contains hash
--- location values of the Merkle proof.

merkle[]
.. haSheS

name

references eferences

merkle-map

uniqueld

localld

count

.|n|tHash
hashesl]

¢ All relationships are singular unless otherwise specified
e Green lines represent embedded/contains

e Blue lines represent linked references

e Text in italics means optional elements

Figure 15. Fragmented BMFF Entity Diagram

18.6.6. Validation

Validating a given chunk requires first validating the merkle-map field’s initHash over the corresponding

initialization segment and then locating the correct entry in the merkle-map field’s hashes array and validating it

against the hash of the chunk’s data, and if needed, deriving that hash using the Merkle proof from the hashes

specified in the chunk’s bmff-merkle-map.

Sample Merkle tree for 5 chunks

l—% l—%
I_I_| r L 1 r L 1
DO0,0 DO,1 DO,2 D0,3 D0,4 Null Null Null
| | | | | |_ |_ |_
Hash Hash Hash Hash Hash Nothing Nothing Nothing

|— m+1 |— m+2 |— m+3 |— m+4 |— m+5

Track #n Initialization Segment

Track #n, Chunk m+1

Track #n, Chunk m+2

/

c2pa-specific box
purpose = “manifest”

Manifest

Assertion
Store
« c2pa hash.bmff

Track #n, Chunk m+3

c2pa-specific box
purpose = ‘merkle”

bmff-merkle-map

/

o

~ merkle[]
exclusionsl] j
alg* .
hash* uniqueld
localld
c2pa.hash.bmff (partial) location
hashes[]

uniqueld

localld

initHash

count (# leaf nodes)
alg*

hashes[]*

Track #n merkle row (merkle-map)

bmff-merkle-map

Figure 16. Validating intitialization segment and a chunk’s data example

To verify track chunk m+3 you must first verify the corresponding initialization segment. The c2pa-specific manifest

box in each Track’s initialization segment will contain the Manifest store. If the asset contains multiple initialization

segments then the Manifest store must be identical in each. This allows validators to verify a Track belong to the

larger set. The active manifest’s c2pa.bmff.hash assertion will contain a merkle field with an array of merkle-

map objects, one per track.

18.6.6.1. Steps

1. From the bmff-merkle-map in chunk’s c2pa-specific merkle box obtain the uniqueld & localld. Use the

uniquelId and localld to find a matching merkle-map from the c2pa.bmff.hash assertion merkle

array in the init segment.

2. If the hash of the init segment using the c2pa.bmff.hash exclusions and the merkle-map alg equals the

initHash inside the merkle-map you just located, the initialization segment is verified.

The parameters alg & hash at the top level of the bmff-hash-map are used for monolithic

NOTE

MP4, whereas alg & hashes in the merkle—map are used for fragmented MP4.

145

To complete verification of chunk m+3: We are looking at Track #n’s merkle—-map found in step 1, and in this

example it contains row 2 of the Merkle tree - D2,0 and D2,1.

3. Hash chunk m+3 using the c2pa.hash.bmff exclusions array and the alg from the merkle-map, yielding
DO0,2(derived).

4. Chunk m+3's bmff-merkle-map hashes array (Merkle proof) will contain the hash of chunk m+4 (D0,3) and

row one hash value D1,0.
5. Hash D0,2(derived) and D0,3 to yield D1,1(derived). Hash D1,0 with D1,1(derived) to yield D2,0(derived).

6. If D2,0(derived) = D2,0 as stored in the assertion merkle-map hashes parameter, and the corresponding

initialization segment was verified in step 2, then chunk m+3 has been verified.

18.7. General Box Hash

18.7.1. Description

A claim generator should use a general box hash assertion to verify the integrity, with a hard binding (i.e.,

cryptographic hash), of assets whose formats use a non-BMFF-based box format such as JPEG, PNG, or GIF.

A general box hash assertion shall have a label of c2pa.hash.boxes. Such an assertion consists of an array of
structures, each one listing one or more boxes (by their name/identifier) and a hash that covers that data of those
boxes (and any possible data that may be present in the file between them), along with the algorithm used for
hashing. The boxes shall appear in the assertion in the same order that they appear in the asset, including the box
containing the C2PA Manifest. If there are any other boxes present in the asset that are not explicitly included in this
assertion, or if the boxes appear out of order, the manifest will be rejected during validation as described in Section
15.12.3, “Validating a general box hash”.

A box may also have an excluded field, which is a boolean value indicating whether a validator can ignore this box
(and associated hash) during validation. If this field is absent, or the field is present and its value is false, the box
shall be hashed and the values compared. For boxes that have an excluded field with a value of true, the claim
generator should include an accurate hash for compatibility with older validators that do not recognize the
excluded field. If the claim generator is not concerned with backwards compatibility, it should write the binary
string 00 (a single byte with a value of 0) for the hash.

In the case where there are multiple instances of the same box type, such as multiple APP1 segments in a JPEG 1 file,
each instance shall be listed separately in the assertion. JPEG segments that are fragments sharing the same segment
identifier are also listed as separate boxes, with the exception of the segments comprising the C2PA Manifest Store (as

described below).

The creation of the hashes is described in Section 13.1, “Hashing”, and the value shall be present in the hash field.
The hash value for a range of boxes shall be computed from the start of the first box (in the range) until the end of the

last box (in the range). This would include any arbitrary bytes that may be present between boxes.

NOTE When using a range of boxes, all data between the start of the first box and the end of the last box is

146

included in the hash. However, when listing each box separately, additional data is not included,

only data within the listed box.

The box containing the C2PA Manifest Store (e.g. caBX for PNG, or 21FF for GIF) shall also be listed in its own array. In
order to clearly identify it as the C2PA Manifest box, it shall have the name C2PA and the value of hash shall be the
binary string 00 (a single byte with a value of 0). The C2PA Manifest Store shall be represented as a single box, even in

the case of a JPEG file where the box is fragmented across multiple APP11 marker segments.

As validators are often used in combination with output of file parsers, it is a security best practice to
NOTE hash all of the file content outside of the C2PA Manifest Store. This will ensure the integrity of the
media and the linked manifest.

The pad value shall always be present and shall be a zero-filled byte string unless it was replaced by something else

during multiple pass processing, in which case no pad shall be present.

NOTE Section 10.4, “Multiple Step Processing” describes how to fill in the correct values and adjust the
padding.

A General Box Hash assertion shall not appear in a Cloud Data assertion.

18.7.2. Special handling of multi-part assets

To support file formats that consist of multiple parts (as described in Section 18.9, “Multi-Asset Hash”), one additional
logical box is defined for cases where the data of one or more parts comes after the box-based data of the primary
part. This box shall be labelled c2pa.after (for arbitrary data beyond the end of the box structure). The
c2pa.after box, if present, shall be the last box listed, and its hash shall be computed from the byte following the
last box until the end of the physical file.

The hard binding assertion, which covers the whole asset, shall be the only assertion that can include a c2pa.after
box. A hash assertion for an individual part shall cover only the contents of that part itself, and not any other part.

18.7.3. Handling for specific formats

18.7.3.1. JPEG-specific Handling

When working with JPEG, the APP11 box is used for standards other than C2PA (i.e., JPEG 360). In those situations, all
non-C2PA APP11 boxes shall be included in the list of hashed boxes. The APP11 boxes containing the C2PA Manifest
Store shall be identified by C2PA. All other boxes shall be identified by the symbol found in ISO 10918-1:1994, Table
B.1.

The C2PA Manifest Store can be identified by it being a JUMBF superbox with a label of c2pa and a JUMBF type UUID
of 63327061-0011-0010-8000-00AA00389B71 as described in Section 11.1.4.2, “Manifest Store”.

The Start of Scan box and Restart boxes, label of SOS and RST[n], will include the entropy coded

segments following the respective marker.

NOTE

147

https://www.iso.org/standard/18902.html
https://www.iso.org/standard/18902.html

The Multi-Picture Format (MPF) extension to JPEG can also be supported using this method by listing all boxes
contained in the file as they appear, assuming there is no data between the EOI of one Individual Image and the SOI
of the next. The boxes list would enumerate the segments from each Individual Image in the MPF in sequence (SOI,
..., EOI, SOI, ..., EOI, ...). However, if the claim generator plans to treat the MPF file as a multi-part asset, then the
c2pa.after box shall be used to hash the additional parts that follow the EOI of the first Individual Image (the
primary part).

18.7.3.2. PNG-specific Handling

A PNG file always begins with an 8 byte header (89 50 4E 47 0D OA 1A 0A).Toinclude it, use the special value
PNGh as the first box in the list of boxes and start hashing from the first byte of the image.

18.7.3.3. TIFF-specific Handling

A TIFF file always begins with an 8 byte header. To include it, use the special value TIFh as the first box in the list of
boxes.

A TIFF file consists of one or more IFDs (image file directories) which are equivalent to "super boxes". Each IFD
contains an array of entries called either 'IFD entries' or 'TIFF fields' which represent the "boxes". The box-name for
each IFD entry shall be the value of the Tag field converted into a string of its decimal value.

Unlike other box-like formats, the data of an IFD entry may not be contained within the entry (unless it is 4 bytes in
length or smaller) but instead will exist elsewhere in the file.

The length of the data of an IFD entry is determined by multiplying the number of data values (as
NOTE determined in the Count field in the IFD entry) by the size each data value (as determined by the
Type field in the IFD entry).

The hash of an IFD entry shall be computed over the 12 bytes of the IFD entry. If the length of the IFD entry is more
than 4 bytes, then the hash shall be computed from the concatenation of those 12 bytes with the bytes of the file
referenced by the entry starting at the byte offset specified in the Value Offset field of the IFD entry and going for
the length of the data.

For some well known IFD entries - StripOffsets (273), TileOffsets (324), and FreeOffsets (288) - the data
referenced by the IFD entry is itself a list of offsets to the actual data. In these cases, the data over which the hash is
computed shall be the concatenation of the following in the order given:
1. The 12 bytes of the IFD,
2. The bytes starting at Value Offset of length Count times the size of Type containing the offsets, and
3. For each offset in the order it appears, the bytes at that offset, with the length given by the type’s associated byte
countentry: StripByteCounts (279), TileByteCounts (325) and FreeByteCounts (289), respectively.

NOTE The image data in a TIFF would therefore be hashed through this combination of "offsets" and "byte
counts".

148

https://www.cipa.jp/e/std/std-sec.html

TIFF also supports SublFDs, an IFD type that points to and therefore incorporates one or more IFDs by reference.
These include not only the type called SubIFD (330), but also EXIF (34665), GPS (34853), and Interoperability
(40965). For all of these IFD types, and any other IFD types which reference other IFDs in this manner, the data over
which the hash is computed shall be the concatenation of the following in the order given:

1. The 12 bytes of the IFD,

2. Either:

a. If N = 1, the bytes starting at Value Offset of length of the size of Type containing the offset of the

referenced IFD, or

b. If N > 1, the bytes starting at Value Offset of length of the size of Type containing the offset to the
array of IFD offsets, concatenated with the bytes starting at that offset of length Count times the size of

Type which contain the offsets to each "treed" IFD.

3. For each referenced IFD, recursively compute the data for the hash for that IFD at that offset as specified in this
section.

18.7.3.4. GIF-specific Handling

The hash of a box containing a 'Packed Fields' attribute will also hash the optional data indicated by that attribute.
For example, The Image Descriptor will include the Local Color Table block, and the Logical Screen Descriptor will
include the Global Color Table block, if they exist.

For all boxes containing a block label, the naming convention shall be as follows: "<Block Label>".
For all extension blocks, the naming convention is as follows: "<Extension Introducer><Extension Label>".
The only other blocks that are not described by the above naming convention are:

« The header will be marked with "GIF89a".
+ The Table Based Image Data will be marked with "TBID".

+ The Logical Screen Descriptor will be marked with "LSD".
For example:

« Header: "GIF89a".
o Trailer: "3B".
+ Image Descriptor: "2C".

« Comment Extension: "21FE".

18.7.3.5. RIFF-specific Handling

RIFF file chunks may be nested in a tree structure of arbitrary depth. The root of this structure consists of one or more
LO chunks, each with the chunk identifier of RIFF. These RIFF chunks are defined with the following structure:

149

« Bytes 0-3: Chunk identifier, always RIFF.

« Bytes 4-7: Chunk length (minus 8 bytes for the chunk identifier and chunk length fields).

« Bytes 8-11: Media type identifier.

« Bytes 12-n: Chunk data (all L1 chunks).
After the media type identifier, the RIFF chunk may contain one or more L1 sub-chunks, each with the following
structure:

+ Bytes 0-3: Chunk identifier.

« Bytes 4-7: Chunk length (minus 8 bytes for the chunk identifier and chunk length fields).

« Bytes 8-n: Chunk data.

« Byte n+1: Padding byte (if necessary).
A special chunk identifier of LIST may be used to nest chunks within an L1 chunk. These LIST chunks mimic the
structure of LO RIFF chunks:

« Bytes 0-3: Chunk identifier, always LIST.

+ Bytes 4-7: Chunk length (minus 8 bytes for the chunk identifier and chunk length fields).

« Bytes 8-11: List type identifier.

« Bytes 12-n: Chunk data (all L2 chunks).

« Byte n+1: Padding byte (if necessary).
For the purposes of calculating a general box hash, each L0 chunk shall be treated as a single box with a size of exactly
12 bytes, and a box name equal to the media type identifier (bytes 8-11). Each non-LIST L1 chunk shall be treated as
a box with a name equal to the chunk identifier (bytes 0-3) and content extending from the beginning of the chunk
identifier (byte 0) to the padding byte, if any, inclusive. Each LIST L1 chunk shall be treated as a box with a name
equal to the list type identifier (bytes 8-11) and content extending from the beginning of the chunk identifier (byte 0)

to the padding byte, if any, inclusive. All chunks nested within a LIST L1 chunk (L2 and higher) shall be treated as a
part of the LIST L1 chunk’s content and hashed as a single box.

In all cases, padding bytes shall be treated as part of the preceding chunk’s content, and shall be included in the hash
for that box.

18.7.3.6. Font-specific Handling

The tables of a font correspond directly to the hash boxes, including the C2PA table.

Tables are always enumerated in the order they appear in the font’s table directory.

Note that the table directory itself is not part of the hashed content, and therefore not covered by any box.

The checkSumAdjustment value shall be treated as zero (0) when computing the hash for the box containing the

150

head table.
The grouping, or lack thereof, of Font tables in the general box hash assertion is up to the claim generator.

Note: Fonts created for wide distribution may benefit from assigning each table to an individual box; in this way, if the
fontis re-packaged in another format, its hash will continue to validate correctly. By contrast, systems which generate
large numbers of fonts automatically, such as a subsetter, may choose to combine tables into fewer boxes to
streamline processing. In this case, the box hash(es) may not validate following a format transformation, due to the

inclusion of inter-table padding.

Because font consumers shall not react to tables they do not recognize, existing font-handling infrastructure will
expect that the head table’s checkSumAdjustment value incorporate the final settled content of the C2PA table
itself, including any local manifest in its entirety.

18.7.4. Schema and Example
The schema for this type is defined by the box-map rule in the CDDL Definition in CDDL for Box Hash:

CDDL for Box Hash

box-map = {

"boxes": [1x box-hash-map],

? "alg":tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash in this assertion, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the “alg value of the
enclosing structure. If both are present, the field in this structure 1is used. If no value
is present in any of these places, this structure is invalid; there is no default.

}

box-hash-map = {

"names": [1x box-name], ; An array of strings representing the box +identifiers in order of
appearance (e.g., APPO', 'IHDR')

? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash in this assertion, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the “alg value of the
enclosing structure. If both are present, the field in this structure 1is used. If no value
is present in any of these places, this structure is invalid; there is no default.

"hash": bstr, ; byte string of the hash value

? "excluded": bool, ; A boolean value indicating whether a validator can dignore this box (
& associated hash) during validation. If this field is absent, the box is hashed and the
values compared.

"pad": bstr, ; zero-filled byte string used for filling up space
}

box-name /= tstr .size (1..10)

Five examples in CBOR diagnostic notation (RFC 8949, clause 8) are shown in Example Box Hash:

1. JPEG;
2. PNG;

3. GIF;

151

https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8949

4. DNG (TIFF), with a SubIFD;

5. TTF.

Example Box Hash

// JPEG Example //

{
Ila'Lgll Ilsha256ll’
"boxes": [
{
"names" : ["SOI", "APPO", "APP2"],
"hash" : be4'...',
"pad" : b64'',
1,
{
"names" ["C2PA"],
"hash" : b64'AA==",
"pad" : b64'',
1,
{
llnamesll [lIDQTII’ IUSOFOII’ llDHTll’ llsosll’ IURSTOII’
"hash" : be4'...',
"pad" : b64'',
}
]
}

// PNG Example //
// with the XMP box excluded //

{
lla'Lgll "Sh3256",
"boxes": [
{
"names" ["PNGh", "IHDR"],
"hash" : be4'...',
"pad" : b64'',
1,
{
"names" ["C2PA"],
"hash" : b64'AA==",
"pad" : b64'',
1,
{
"names" ["sBIT"],
"hash" : be4'..."',
"pad" : b64'',
3,
{
"names" ["iTXt"],
"hash" : be4'..."',
"excluded": true,
"pad" : b64'',
1,
{
"names" : ["IDAT", "IEND"],
"hash" : b64'...',
"pad" : b64'',
}
]
}

152

"RST1",

||EOI||:| 5

// GIF Example //
{
"alg" : "sha256",
"boxes": [
{
"names" : ["GIF89a", "LSD"]
"hash" : be4'...',
"pad" : b64ll’

"names" : ["2C"’ "TBID"’ HZCH’ "TBID"]’
"hash" : b64'..."',
"pad" : b64'',

"names" : ["21FE"],
"hash" : be4'..."',
"pad" : b64'',

"names" : ["21F9"],
"hash" : be4'...',
"pad" : be4'',

"names" : ["38"],
"hash" : be4'...',
"pad" : be4'',

b

}

// TIFF/DNG Example //
{
"alg" : "sha256",
"boxes": [
{
"nameS" : ["TIFh", l|254l|, ll256ll, l|257l|, ll258ll, l|259l|, ll262ll],
"hash" : be4'...',
"pad" : b64'',

"names" : ["273"’ "277"’ "278"’ "279"’ "284"]’
"hash" : b64'..."',
"pad" : b64'',

// this is a SubIFD containing a secondary image //

"namesﬂ 9 ["330"’ "254", "256"’ "257", "258"’ "259", "262"’ "277", "278"’ "279",
"284"]’

"hash" : be4'...',

"pad" : b64'',

"names" : ["700", "34665"],
"hash" : be4'..."',
"pad" : be4'',

"names" : ["C2PA"],
"hash" : b64'AA==",
"pad" : be4'',

153

}

// TTF Example //

{

154

Ila'Lgll
"boxes":

{

I

"sha256",

L

"names" ["C2PA"],
"hash" : b64'AA==",
"pad" : b64'',
"names" ["PCLT"],
"hash" : be4'...',
"pad" : b64'',
"names" ["cmap"] s
"hash" : be4'...',
"pad" : b64'',
"names" ["CVt"] ,
"hash" : be4'..."',
"pad" : b64'',
llnamesll [llfpgmll] 5
"hash" : be4'...',
"pad" : be4'',
"names" [ugaspn] s
"hash" : be4'...',
"pad" : b64'',
Ilnamesll [llg'l_yfll:] 5
"hash" : be4'..."',
"pad" : be4'',
"names" ["head"],
"hash" : be4'...',
"pad" : b64'',
"names" ["hhea"],
"hash" : be4'...',
"pad" : b64'',
"names" ["hmtx"],
"hash" : be4'...',
"pad" : b64'',
"names" ["loca"],
"hash" : be4'...',
"pad" : b64'',

"names" : ["maxp"],
"hash" : be4'...',
llpadll : b64| 1 5

1,

{
"names" : ["name"],
"hash" : be4'...',
llpadll : b64| 1 5

i

{
"names" : ["post"],
"hash" : be4'...',
llpadll : b64| 1 ’

},

{
llnamesll : [llprep"] 5
"hash" : be4'..."',
llpadll : b64| 1 ’

}

18.8. Collection Data Hash

18.8.1. Description

In workflows where it is known in advance that the C2PA Manifest will refer to a collection of assets, instead of a single
asset, the collection data hash assertion shall be used as the method to specify the hard bindings (i.e., cryptographic

hashes) for the assets in the collection.

It is possible to describe each folder of the training data set of an Al/ML model by having each folder

NOTE
be a separate ingredient of the complete training data set’s manifest.

A collection data hash assertion shall have a label of c2pa.hash.collection.data.

A collection data hash assertion shall not appear in a cloud data assertion.

18.8.2. Schema and Example

The schema for this type is defined by the collection-data-hash-map rule in the following CDDL Definition:

; An array of URIs and their associated hashes
$collection-data-hash-map /= {

"uris": [1x uri-hashed-data-map],

"alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash on each entry of the ‘uris’ array, taken from the C2PA
hash algorithm identifier list.

? "zip_central_directory_hash" : bstr,

}

; The data structure used to store a reference to a URI and its hash.
$uri-hashed-data-map /= {

155

https://datatracker.ietf.org/doc/html/rfc8610

"uri": relative-url-type, ; relative URI reference

"hash": bstr, ; byte string containing the hash value

? "size": size-type, ; Number of bytes of data

? "dc:format": format-string, ; IANA media type of the data

? "data_types": [1x Sasset-type-map], ; additional information about the data's type

}

; with CBOR Head (#) and tail ($) are introduced 1in regexp, so not needed explicitly
relative-url-type /= tstr .regexp "[-a-zA-Z0-9@:%._\\+~#=1{2,256}\\.[a-z]{2,6}\\b[-a-zA-Z0-
9@:%_\\+.~#2&//=]*"

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

// example of a list of remote URLs //

{
"alg" : "sha256",
"uris": [
{
"uri": "photos/id/870.jpg"
"hash": b64'+ddHMTUUEpuSF6dNaHFa9uFclsSnY+0313MMPFvX5Ws=",
"dc:format": "image/jpeg"
1,
{
"url": "deepmind/bigbigan-resnet50/1",
"hash" : be4'..."',
"dc:format": "application/octet-stream",
"data_types": [
{
"type": '"c2pa.types.generator",
1,
{
"type": "c2pa.types.model.tensorflow",
"version": "1.0.0",
},
{
"type": "c2pa.types.tensorflow.hubmodule",
"version": "1.0.0",
}
]
}
]
}
// example of a list of (relative) file URIs //
{
"alg" : "sha256",
"uris": [
{
"uri": "imagel.png",
"hash": b64'U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7nlng="
},
{
"uri": "document.pdf",
"hash": b64'G5hfJwYeWT1f1lxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
1,
]
}

// example of a list of relative paths inside an EPUB (which is a ZIP) //
{

156

https://datatracker.ietf.org/doc/html/rfc8949

"alg" : "sha256",
"uris": [

"uri": "mimetype"
"hash": b64'+ZXhhbXBsZSBvZiBhIGxpc3Qgb2YgcmVsYXRpdmUgc8=",
"dc:format": "text/text"

1,
{
"uri": "META-INF/container.xml"
"hash": b64'+ddHMTUUEpuSF6dNaHFa9uFcl1sSnY+0313MMPFvX5Ws=",
"dc:format": "text/xml"
1,
{
"uri": "cover_page.svg",
"hash": b64'U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7nlng="
1,
{
"uri": "chapterl.html",
"hash": b64'G5hfJIwYeWT1f1lxOhmfCO9xDAK52aKQ+YbKNhRZeq92c="
1,

18.8.3. Fields

The uriis field consists of an array of uri-hashed-data-map values that represents a collection of assets. The
alg field, is as described in Section 13.1, “Hashing” and by having it here ensures that all content items in the list are

hashed with the same algorithm.

For each uri-hashed-data-map, the uri field shall be present and shall be a valid relative URI. All URIs shall be
considered as relative to the location of the manifest, regardless of whether that is local, in a container (e.g., ZIP) or in
the cloud. As a relative URI can contain navigation elements (e.g., . . /), it is possible to refer to content items that are
not in the same folder as the manifest - which would be a security issue. A claim generator shall validate or sanitize

the URIs before use, ensuring that neither . nor . . appear as part of the URI.

The hash field is a byte string representing of the valid hash value for the content item, as determined by the alg

field. The hash shall be over all bytes (from 0 to n) of the content item - no exceptions.

The rest of the fields are identical to those of an ingredient assertion.

18.8.4. Hashing the members of the collection

Each file in the collection shall be hashed individually using the specific hash algorithm defined in the alg field. The
resultant hash value shall be stored in the hash field of the uri-hashed-data-map associated with the uri to
the file.

Not all files in a given hierarchy are required to be included in a hashed collection.

NOTE While this is useful in cases where there are files present that aren’t necessary to hash, it also
provides an opening for an adversary to add files without invalidating the binding.

157

18.9. Multi-Asset Hash

18.9.1. Description

There exist a number of file formats that are composed of multiple parts, where each part is itself a valid file format,

such as when multiple individual images are aggregated into a single file. Some examples include:

« CIPA Multi-Picture Format (MPF)
« Android Ultra HDR format (which uses MPF)
+ 1SO 21496 HDR (which uses MPF)

« Android Motion Photo format (which doesn’t use MPF, but can exist alongside MPF in the same file)

In some cases, it may be desirable or even required to verify the integrity of each individual part of the file, rather than
just the file as a whole. Accordingly, the current set of hard binding assertions are not sufficient to separately verify
the integrity of each part. Additionally, the individual parts may have their own C2PA Manifests that need to be

recorded. The multi-asset hash assertion is used to provide this functionality.

One additional unique case is where an individual part is optional - meaning that it is possible that it can/will be
removed as part of a workflow that does not involve a trusted signer - but the ability to verify the integrity of the rest
of the file is still desired.

18.9.2. Details

A multi-asset hash assertion shall have a label of c2pa.hash.multi-asset. Although it contains hashes and
modifies the handling of the hard binding, it is not considered a hard binding.

A multi-asset hash assertion shall not appear in a cloud data assertion.
A multi-asset hash assertion should not be used with a compressed manifest.

NOTE It is not clear if there exists a technical incompatibility between the two, so it is recommended to
avoid using them together until further evaluation is complete.

Each part, including the primary part, shall be represented as a part—hash-map object within the parts array. The
location field shall contain a Tocator object that describes the location of the part within the file. The Locator
object shall contain either a bmffBox field or byteOffset and length fields. The byteOffset field shall
contain the byte offset (from the physical start of the file) of the part within the file, and the Tength shall contain the
length of the part in bytes. The bmffBox field shall contain the BMFF box of the part, when the part is contained with
the primary part but as a specific BMFF box (e.g., mpvd as used by Motion Photo). For a part described by a bmffBox
field, the content of the part shall be considered the payload of that box only, excluding the box header.

The parts within the parts array shall be listed in the order in which they appear in the file, and the parts shall be

contiguous, non-overlapping, and cover every byte of the asset.

158

https://www.cipa.jp/std/documents/download_e.html?CIPA_DC-007-2025_E
https://developer.android.com/media/platform/hdr-image-format
https://www.iso.org/standard/86775.html
https://developer.android.com/media/platform/motion-photo-format

NOTE Appearance in the file is defined as their sequential order as they would be located if starting from
byte 0 and scanning through to the last byte of the file.

The hashAssertion field shall contain a hashed URI to the hash assertion for the part. A part’s hash assertion shall
be a standard hard binding assertion (e.g., c2pa.hash.data), but the label shall have the string . part and any
multiple instance identifier appended. For example, c2pa.hash.data.part__2.

Adding these label suffixes makes it clear that hard binding assertions for parts are not considered
NOTE standard hard binding assertions and thus there can exist multiple instances of them within a C2PA
Manifest.

The optional field shall be a boolean indicating if the presence of the part is optional - the default is false if not
present.

If a part has its own C2PA Manifest, which is not self-contained within that part (e.g., individual frames in a multi-
frame asset), then it is recommended to store that C2PA Manifest into the asset’s Manifest Store and create a
componentOf ingredient to reference it.

18.9.3. Schema and Example

The schema for this type is defined by the multi-asset-hash-map rule in the following CDDL Definition:

multi-asset-hash-map = {

"parts": [* part-hash-map] ; An array of one or more hashes for 1individual parts of the
multi-part file
}

byte-range-locator = (
"byteOffset": uint ; The byte offset of the part within the file
"length": uint ; The length of the part

)

; this is a special CDDL map of choices (meaning that only one of the following can be
present)
locator-map = {
byte-range-locator // ; The byte offset & length of the part within the file
"bmffBox": tstr ; An XPath to the BMFF box of the part
}

part-hash-map = {
"location" : locator-map, ; The location of the part within the file
"hashAssertion": $hashed-uri-map, ; hashed_uri to the hash assertion of the part
? "optional": bool, ; If the part is optional and can be discarded

}

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

// multi-asset-hash assertion //
// The asset (of 33,333 bytes) comprises a JPEG part in bytes [0,11111) and another
// part in bytes [11111,33333).

{
"parts" : [

159

https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8949

{

"location": {
"byteOffset": 0,
"length": 11111

1,
"hashAssertion": "self#jumbf=c2pa.assertions/c2pa.hash.boxes.part"
1,
{
"location": {
"byteOffset": 11111,
"length'": 22222
1,
"hashAssertion": "self#jumbf=c2pa.assertions/c2pa.hash.data.part"
}

]
}

// c2pa.hash.boxes.part - box hash for the first part of the asset //
{

"alg" : "sha256",
"boxes": [
{
"names" : ["SOI", "APPQ", "APP2"],
"hash" : be4'...',
"pad" : b64'',
},
{
"names" : ["C2PA"],

"hash" : b64'AA==",
"pad" : be64'',

"nameS" : ["DQT"’ "SOFO"’ "DHT"’ "SOS"’ "RSTO"’ "RSTl"’ "EOI"]’
"hash" : b64'...',
"pad" : be4'',
}
]
}

// c2pa.hash.data.part - data hash for the second part of the asset //
{

"alg" : "sha256",
"pad" : '0000',
"hash" : be4'...',

}

// c2pa.hash.boxes - overall asset hash, covering the whole two-part asset //

{

"alg" : "sha256",
"boxes": [
{
"names" : ["SOI", "APPO", "APP2"],
"hash" : be4'...',
Hpadﬂ : b64|l
},
{
"names" : ["C2PA"],
"hash" : b64'AA==",
npadn : bea"!
1,
{
"nameS" : ["DQT", HSOFOH, HDHTH, "SOS"’ HRSTO", HRSTl", HEOIH],
"hash" : b64'...',

160

}

Such a sample multi-asset hash assertion might be included in an image, as shown in [_multi_asset_hdr_image].

]

b
{

}

llpadll

"names"

Ilhashll
Ilpadll

: be4g!'!

b64'...",
: be4g!'!

["c2pa.after"],

Entire Asset

Image (JPEG)

Start of Image (SOI)

XMP (APP1)

MPF (APP2)

Start of Scan (SOS)

IMAGE DATA

C2PA Manifest (C2PA)

End of Image (EOI)

C2PA Manifest

Assertion Store

c2pa.hash.boxes

c2pa.hash.multi-asset

c2pa.hash.boxes.part

Gain Map

Start of Image (SOI)

XMP (APP1)

Start of Scan (SOS)

GAIN MAP DATA

End of Image (EOI)

Te!

It is not SVG - cannot display

c2pa.hash.data.part

c2pa.actions

Claim

Claim Signature

Figure 17. Example of a multi-asset hash assertion used for an HDR gain map

161

18.10. Soft Binding

18.10.1. Description

If a claim generator will be providing a soft binding for the asset’s content, it shall be described using a soft binding
assertion. The types of soft bindings which may be created and stored in such an assertion are described in Section
18.10, “Soft Binding”.

A previous version of this specification provided a url field to provide a pointer to where the hashed data may be
located, but it was never used. This field is now deprecated in favor of the asset reference assertion. Claim generators
shall not add this field to a soft binding assertion, and consumers shall ignore the field when present, except this shall
not affect inclusion of the field as part of the content being validated as described in Section 15.10.3, “Assertion
Validation”.

A previous version of this specification provided an extent field within the scope field to describe a portion of the
digital content covered by the soft binding assertion, in an algorithm specific format. This field is now deprecated in
favor of the region field. Claim generators shall not add this field to a soft binding assertion, and consumers should
ignore the field when present. This does not affect inclusion of the field as part of the content being validated as
described in Section 15.10.3, “Assertion Validation”.

A soft binding assertion shall have a label of c2pa.soft-binding.

18.10.2. Schema and Example

The schema for this type is defined by the soft-binding-map rule in the following CDDL Definition:

;Align regions-of-interest object structure in soft-binding assertions with that used for
other purposes
;# include regions-of-interest

;The data structure used to store one or more soft bindings across some or all of the
asset's content
soft-binding-map = {

"alg": tstr, ; A string identifying the soft binding algorithm and version of that
algorithm used to compute the value, taken from the C2PA soft binding algorithm list. If
this field is absent, the algorithm is taken from the "alg_soft’ value of the enclosing
structure. If both are present, the field in this structure is used. If no value is present
in any of these places, this structure is invalid; there is no default.

"blocks": [1* soft-binding-block-map],

"pad": bytes, ; zero-filled byte string used for filling up space

? "pad2": bytes, ; optional zero-filled byte string used for filling up space

? "name": tstr .size (1..max-tstr-length), ; (optional) a human-readable description of
what this hash covers

? "alg-params": bstr, ; (optional) CBOR byte string describing parameters of the soft
binding algorithm.

? "url": uri, ; Unused and deprecated.

}

soft-binding-block-map = {
"scope": soft-binding-scope-map,
"value'": bstr, ; CBOR byte string describing, in algorithm specific format, the value of

162

https://datatracker.ietf.org/doc/html/rfc8610

the soft binding computed over this block of digital content"
}

soft-binding-scope-map = {

? "extent": bstr, j;deprecated, CBOR byte string describing, in algorithm specific format,
the part of the digital content over which the soft binding value has been computed"

? "timespan":soft-binding-timespan-map,

? "region": region-map, ; CBOR object defined in regions-of-interest.cddl

}

soft-binding-timespan-map = {

"start": uint, ; Start of the time range (as milliseconds from media start) over which the
soft binding value has been computed.

"end": uint, ;5 End of the time range (as milliseconds from media start) over which the
soft binding value has been computed.

}

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

{
llalgll: "phash",
"pad": hlool’
"url": 32("http://example.c2pa.org/media.mp4"),
"blocks": [
{
"scope": {
"timespan": {
"end": 133016
"start": 0,
}
1,
"value": b64'dmFsdWUxCg=="
b
{
"scope": {
"timespan": {
"end": 245009
"start": 133017,
}
1,
"value": b64'ZG1Gc2RXVX1DZz09=="
}
]
}

18.10.3. Requirements

The soft binding algorithm used shall be present as the value of the alg field, and the blocks over which is was
applied shall be listed in the blocks field. If the algorithm used requires any additional parameters, they should be
present as the value of alg-params.

The scope field may contain either a region or timespan field to describe the portion of digital content that the
soft binding has been computed over. The region field, when present, contains a region-map object (as defined
in Section 18.2, “Regions of Interest”). The timespan field, when present, describes the time interval over which the

soft binding was computed in milliseconds from the start of the content.

163

https://datatracker.ietf.org/doc/html/rfc8949

18.10.4. Soft Binding Algorithm List

The soft binding algorithm list is a machine readable list of permissible values for the a'lg field. The a'lg field shall
correspond to the alg field of an algorithm present in that list. The format of alg-params and value fields are
algorithm specific and described via a human readable information page referenced by informationalUr1 within
the entry for algin the list.

The list is maintained as a JSON document by the C2PA at the following location: https://github.com/c2pa-org/
softbinding-algorithm-list

Entries in the soft binding algorithm list that have a deprecated field of true shall be considered deprecated and
shall not be used to create soft binding assertions in manifests. Soft binding algorithms marked deprecated may be

used for resolving soft bindings but this behaviour is discouraged.

The JSON schema for entries within the soft binding algorithm list is shown below:

{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"type": "object",
"properties": {
"Jdentifier": {
"type": "integer",
"minimum": 0,
"maximum": 65535,
"description": "This 1didentifier will be assigned when the soft binding algorithm
is added to the list."

s
"deprecated": {
"type": "boolean",
"default": false,
"description": "Indicates whether this soft binding algorithm is deprecated.
Deprecated algorithms shall not be used for creating soft bindings. Deprecated algorithms
may be used for resolving soft bindings but this behaviour 1is discouraged."
b
"alg": {
"type": "string",
"pattern": "(c2pa\\.|[A-Za-z0-9\\-\\.1+)",
"description": "Entity-specific namespace as specified for C2PA Assertions
labels that shall begin with the Internet domain name for the entity similar to how Java
packages are defined (e.g., 'com.example.algol’, "net.example.algos.algo2)"

1,
"type": {
"type": "string",
"enum": [
"watermark",
"fingerprint"
1,
"description": "Type of soft binding implemented by this algorithm."
1,

"decodedMediaTypes": {
"type": "array"’
"minItems": 1,
"items": {

"type": "string",
"enum": [
"application",

164

https://github.com/c2pa-org/softbinding-algorithm-list
https://github.com/c2pa-org/softbinding-algorithm-list

"audio",
"image",
"model",
"text",
"video"
1,
"description": "IANA top level media type (rendered) for which this soft
binding algorithm applies."”
}
b
"encodedMediaTypes": {
"type": "array",
"minItems": 1,
"Jtems": {
"type": "string",
"description": "IANA media type for which this soft binding algorithm
applies, e.g., application/pdf",
"pattern": "A([a-zA-Z0-9\\-1+\\/[a-zA-Z0-9\\-\\+]+(?:\\.[a-zA-Z0-9\\-
\\+]+)*)$"
}
+,
"entryMetadata": {
"type": "object",
"properties": {
"description": {
"type": "str‘ing",
"description": "Human readable description of the algorithm."
},
"dateEntered": {
"type": "string",
"format": "date-time",
"description": "Date of entry for this algorithm."
1,
"contact": {
lltypell: llstr-ingll’
"format": "email"
+,
"informationalUrl": {
"type": "string",
"format": "uri",
"description": "A web page containing more details about the algorithm."
}
i
"required": [
"description",
"dateEntered",
"contact",
"informationalUrl"
]
b
"softBindingResolutionApis": {
"type": "array",

"jtems": {
"type": "string",
"format": "uri"

I

"description": "A list of Soft Binding Resolution APIs supporting this

algorithm."
}
b,

"required": [
"identifier",
Ila'Lgll q

165

lltype" 5

"entryMetadata"
1,
"oneOf": [
{
"required": [
"decodedMediaTypes"
]
},
{
"required": [
"encodedMediaTypes"
]
}
]

An JSON example of a entry in the soft binding algorithm list is shown below:

{

"identifier": 1,

"deprecated": false,

"alg": "com.example.product",

"type": "watermark",

"decodedMediaTypes": [

"audio",
"video",
"text",
"image"

1,

"entryMetadata": {

"description": "Foo Inc.'s watermarking algorithm version 1.2",
"dateEntered": '"2024-04-23T18:25:43.5117",

"contact": "foo.bar@example.com",

"informationalUrl": "https://example.com/wmdetails"

1,

"softBindingResolutionApis": [
"https://resolver.example.com/endpoint",
"eipl55:1:0xd4d871419714b778ebec2e22c7c53572b12341234"

]

}

The unique name of the algorithm is given in the a'lg field, and corresponds to the string that shall be used in the alg
field a soft binding assertion that uses that algorithm. The name shall follow the namespacing requirements and
represent the owner of the algorithm. A unique numeric identifier is also assigned for each algorithm. If different

versions of an algorithm are provided, then each shall have a separate entry in the Soft Binding Algorithm List.

The type of the algorithm shall be either 'watermark' or 'fingerprint' to represent that the algorithm is an invisible
watermark, or a fingerprint.

The deprecation status of the algorithm is given in the deprecated field. A validator should not resolve any soft
bindings that use deprecated algorithms. C2PA Manifests shall not be written using deprecated soft bindings.

The soft binding algorithm list entry shall contain a list of supported media types either as encodedMediaTypes or
as decodedMediaTypes. The supported media types for decodedMediaTypes shall correspond to one more of

166

the top-level IANA media types comprising of: "application", "audio", "image", "model", "text", "video". The
supported media types for encodedMediaTypes shall correspond to one more of the registered IANA subtypes of a
decodedMediaType listed in the preceding sentence. These IANA top-level and subtypes are listed at
https://www.iana.org/assignments/media-types/media-types.xhtml

Additional information shall accompany each entry in the soft binding algorithm list, within the entryMetadata
field. These are a human readable description of the algorithm (description), and the date it was proposed for
entry into the soft binding algorithm list (dateEntered).

The contact details of the owner of the entry shall be provided as an email address (contact, required). An
informational URL (informationalUr1, required) shall be provided that references a human readable page
describing characteristics of the soft binding algorithm. The information at that page is unconstrained but might
include details such as how to interpret the value field in the soft binding registry, which is encoded in an algorithm
specific form.

18.10.5. Soft Binding Resolution API

The soft binding resolution APl is a Web API providing a standard way of retrieving C2PA Manifest stores from a soft
binding resolution APl endpoint given a soft binding value, a manifest identifier, or an asset. The soft binding
algorithm list entry may contain a list of URIs of soft binding resolution APIs in the softBindingResolutionApis
field. If several URIs are given then any may be used for a soft binding resolution.

The API specification and documentation is available here.

18.10.5.1. Validating Soft Binding Matches

A common use for soft bindings is to discover the active manifest, from a manifest repository, for an asset whose C2PA
Manifest is absent or invalid.

Discovery of the C2PA Manifest shall be performed using one, or a combination of, algorithms identified by the alg
field within the C2PA Soft Binding Algorithm List. The list is maintained as a JSON document by the C2PA at the
following location: https://github.com/c2pa-org/softbinding-algorithm-list

If a C2PA Manifest is found in a manifest repository, and that manifest contains one or more soft binding assertions,
then the matcher shall ensure that all soft binding assertions in the located manifest match the soft bindings used to

perform the discovery.

A soft binding assertion shall be considered a match if both the algorithm identifier (alg) and the value (value)
described within the assertion match the algorithm identifier (alg) and value (value) used to perform the match.
Matching is performed in the manner prescribed by the specified algorithm.

18.11. Cloud Data

167

https://www.iana.org/assignments/media-types/media-types.xhtml
softbinding:softbinding-resolution-api.pdf
https://github.com/c2pa-org/softbinding-algorithm-list

18.11.1. Description

There are use cases where storing the data for the assertion remotely, such as in the cloud, is better than embedded
inside the asset, especially when the data is large. For any such cases, it is possible to use a special type of assertion
that serves as a reference to that information. For privacy and reliability reasons, data referenced through a cloud
data assertion shall be considered optional: their contents should not be retrieved as part of manifest validation. A
validator may retrieve the contents later to serve an application-dependent need, such as further exploration of the

provenance history.

If assertion metadata is included as part of another assertion, then it too would be part of the information referenced
from a cloud data assertion. It is also possible to store individual assertion metadata assertions remotely, just as with

other assertion types.
A cloud data assertion shall have a label of c2pa.cloud-data.

A cloud data assertion shall not refer to an assertion with the label c2pa.hash.data, c2pa.hash.boxes,

c2pa.hash.collection.data,c2pa.hash.bmff.v2 (deprecated), or c2pa.hash.bmff.v3.

18.11.2. Schema and Example

The schema for this type is defined by the cloud-data-map rule in the following CDDL Definition:

; Assertion that references the actual assertion stored in the cloud
cloud-data-map = {

"label": tstr, ; label for the cloud-based assertion (eg.c2pa.actions)

"size": size-type, ; Number of bytes of data

"location": Shashed-ext-uri-map, ; http(s) URL to where the cloud-hosted assertion can be
found

"content_type": tstr .regexp "A[-\\w.]+/[-+\\w.]+S$", ; media/MIME type for the data

? "metadata": $assertion-metadata-map, ; additional information about the assertion

}

; size is minimum 1 in multiples of 1.0
size-type = int .ge 1

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

{
"size": 98765,
"label": "c2pa.thumbnail.claim",
"location": {
"url": "https://some.storage.us/foo",
"hash": b64'zP84FPSremIrAQHlhw+hRYQdZp/+KggnDOW8opX1IQQ="
},
"content_type": "application/jpeg"
}

168

https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8949

18.12. Embedded Data

18.12.1. Description

In previous versions of this specification, a concept of a data box as a special type of JUMBF box was used as a way to
enable the arbitrary embedding of data into a C2PA Manifest, such as for thumbnails, icons and inputTo ingredients.
It was determined that doing this via a new type of box introduced unnecessary complexities and missing
functionality - such as the inability to redact data boxes. Accordingly, that concept has been deprecated in favor of a
standard assertion which uses a standard JUMBF Embedded File content type box to contain the data.

An embedded data assertion shall have a label that starts with c2pa.embedded-data and follows the rules of
assertion labels with respect to multiple instances. Additionally, some other assertion types will be technically

equivalent to a embedded data assertion, but will have their own unique labels (e.g., c2pa.thumbnail.claim).

18.12.2. Technical Details

Since the embedded data assertion is based on a JUMBF Embedded File content type box, it’s Embedded File
Description box shall contain an IANA media type (e.g., image/png) as the value of the MEDIA TYPE field, and may
contain a file name as the value of the FILE NAME field. It shall not have the External toggle bit set.

IANA structured suffixes (https://www.iana.org/assignments/media-type-structured-suffix/media-
NOTE type-structured-suffix.xhtml), such as +json and +z1ip, are also supported as values of the MEDIA
TYPE field.

The Binary Data box of the embedded data assertion shall be the bits of a file (such as a raster image or text prompt)
in whatever format is desired by the claim generator, but matches the media type specified in the Embedded File

Description box.

18.13. Thumbnail

18.13.1. Description

A thumbnail assertion provides an approximate visual representation of the asset at a specific event in the lifecycle of

an asset. There are currently two specific events:

« ingredient import and claim creation;

« each using a unique label for the assertion.

18.13.1.1. Claim Thumbnails

For thumbnails created at claim creation time, the thumbnail assertion shall have the label
c2pa.thumbnail. claim. There shall be no more than one thumbnail assertion with this label in a C2PA Manifest.

Previous versions of this specification required that the IANA registry media type of the thumbnail be included in the

169

https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml

label name (e.g., c2pa. thumbnail.claim.png). This naming convention has been deprecated.

18.13.1.2. Ingredient Thumbnails

When importing an ingredient (see Section 10.3.2.2, “Adding Ingredients”), one should reference that ingredient’s
own manifest-stored thumbnail. However, some ingredients may not include a thumbnail assertion, or even a
manifest. In that case, a new thumbnail of the ingredient should be generated, and a new thumbnail assertion in the

active manifest created.

The thumbnail assertion for an ingredient shall have a label that starts with c2pa.thumbnail.ingredient and
follows the rules of assertion labels with respect to multiple instances. For example, an ingredient thumbnail might
have the label c2pa.thumbnail.ingredient__1.

Previous versions of this specification required that the IANA registry media type of the thumbnail be included in the
label name (e.g., c2pa.thumbnail.claim.png). This naming convention has been deprecated.

Previous versions of this specification required a _1 suffix for the first instance, and required a single underscore. The
current specification, by adopting consistent naming with all assertions, uses c2pa.thumbnail.ingredient for
the first instance, c2pa.thumbnail.ingredient__1 for the second, etc. The previous naming convention has

been deprecated.

18.13.1.3. Technical Details

A thumbnail assertion is an embedded data assertion but with a special label identifying this specific use case.

18.14. Actions

18.14.1. Description

An actions assertion provides information on edits and other actions taken that affect the asset’s content. There will
be an array of actions - each action declaring what took place on the asset and (optionally) when it took place, along
with possible other information such as what software performed the action. Except where noted in Section 18.14.2,
“Mandatory presence of at least one actions assertion”, the order of actions in this array is unspecified, and does not

imply the order in which actions were performed.

There are two versions of the actions assertion - the original v1 (which shall have a label of c2pa.actions) and the
new and improved v2 (which shall have a label of c2pa.actions.v2). Actions are modelled after XMP
ResourceEvents, but with a number of C2PA-specific adjustments.

vl actions are fully specified in its actions array. However, in v2, an action may either be fully specified in an
element of the actions array or it may be derived from an element in the templates array with the same action

name.

For each action present in either the actions or templates arrays, the value of the action field shall be either a

pre-defined action name (c2pa.resized, c2pa.edited, etc) or entity-specific action name

170

https://github.com/adobe/xmp-docs/blob/master/XMPNamespaces/XMPDataTypes/ResourceEvent.md
https://github.com/adobe/xmp-docs/blob/master/XMPNamespaces/XMPDataTypes/ResourceEvent.md

(com. fabrikam.gaussianBlur, etc.).

The set of pre-defined names, prefixed with c2pa. are listed in Table 8, “List of pre-defined actions”:

Table 8. List of pre-defined actions

Action

c2pa.addedText

c2pa.adjustedColor
c2pa.changedSpeed
c2pa.color_adjustments
c2pa.converted
c2pa.created
c2pa.cropped
c2pa.deleted
c2pa.drawing

c2pa.dubbed

c2pa.edited

c2pa.edited.metadata

c2pa.enhanced

c2pa.filtered

c2pa.opened

c2pa.orientation
c2pa.placed
c2pa.published
c2pa.redacted

c2pa.removed

Meaning

(visible) Textual content was inserted into the asset, such as on a text

layer or as a caption.

Changes to tone, saturation, etc.

Reduced or increased playback speed of a video or audio track
[DEPRECATED] Changes to tone, saturation, etc.

The format of the asset was changed.

The asset was first created.

Areas of the asset’s digital content were cropped out.

Areas of the asset’s digital content were deleted.

Changes using drawing tools including brushes or eraser.

Changes were made to audio, usually one or more tracks of a composite

asset.

Generalized actions that would be considered editorial transformations

of the content.

Modifications to asset metadata or a metadata assertion but not the
asset’s digital content.

Applied enhancements such as noise reduction, multi-band

compression, or sharpening that represent non-editorial transformations

of the content.
Changes to appearance with applied filters, styles, etc.

An existing asset was opened and is being set as the parentOf

ingredient.

Changes to the direction and position of content.

Added/Placed one or more componentOf ingredient(s) into the asset.

Asset is released to a wider audience.
One or more assertions were redacted

A componentOf ingredient was removed.

171

c2pa.repackaged

c2pa.resized

c2pa.transcoded

c2pa.translated
c2pa.trimmed
c2pa.unknown

c2pa.watermarked

A conversion of one packaging or container format to another. Content is
repackaged without transcoding. This action is considered as a non-
editorial transformation of the parentOf ingredient.

Changes to either content dimensions, its file size or both

A conversion of one encoding to another, including resolution scaling,
bitrate adjustment and encoding format change. This action is
considered as a non-editorial transformation of the parentOf
ingredient.

Changes to the language of the content.
Removal of a temporal range of the content.
Something happened, but the claim_generator cannot specify what.

An invisible watermark was inserted into the digital content for the
purpose of creating a soft binding.

In addition, the following set of pre-defined names (in Table 9, “List of font actions”), prefixed with font. are used

specifically for font assets:

NOTE

An earlier version of this specification labelled these as c2pa. font, but that has been deprecated

in favour of the shorter font prefix.

Table 9. List of font actions
Action

font.charactersAdded
font.charactersDeleted
font.charactersModified
font.createdFromVariableFont

font.edited

font.hinted

font.merged
font.openTypeFeatureAdded
font.openTypeFeatureModified
font.openTypeFeatureRemoved

font.subset

172

Meaning

Characters or character sets added.

Characters or character sets deleted.

Characters or character sets added and deleted.

Font was instantiated, in whole or part, from a variable font.

Font has suffered an editing action not described by any more-specific
action.

Hinting applied.

Fontis a combination of antecedent fonts.
OpenType feature added to font.
OpenType feature altered.

OpenType feature removed from font.

Font has been stripped down to support an arbitrary (sui generis) sub-
group of characters.

18.14.2. Mandatory presence of at least one actions assertion

There shall be at least one actions assertion present in either the created_assertions or
gathered_assertions array of the Claim of a standard C2PA Manifest. Furthermore:

« If the asset was created de novo (for example, as a result of performing a File > New operation in a creative
tool, capturing a photo or video, or generating the media by a generative Al model), then the actions array in
the first c2pa.actions assertion in either the created_assertions or gathered_assertions array of
the Claim shall have a c2pa.created action asiits first element.

o For all assets, a corresponding digitalSourceType field, with an appropriate value, shall be recorded
with the c2pa.created action, to indicate the nature of the asset at its inception. If the asset is created
with no digital content, then the digitalSourceType field shall have the value http://c2pa.org/
digitalsourcetype/empty.

« If the asset was created by opening an existing asset as a parentOf ingredient for editing, then the actions
array in the first c2pa.actions assertion in either the created_assertions or gathered_assertions
array of the Claim shall have a c2pa.opened action as its first element. No digitalSourceType field is
required in conjunction with a c2pa.opened action.

NOTE This requirement does not apply to Update Manifests.

NOTE When recording any actions in gathered_assertions, bearin mind that these assertions are not
attributed to the signer (see Chapter 10, Claims).

The full set of actions assertions in a C2PA Manifest shall contain no more than one action whose type is either
c2pa.created or c2pa.opened. If one of these actions appears within created_assertions, then neither
shall appear within gathered_assertions, and if one appears within gathered_assertions, then neither
shall appear within created_assertions.

EXAMPLE: A generative Al model generates a video in response to a text prompt. The resulting video asset’s active
manifest would have a c2pa.actions assertion starting with a c2pa.created action, itself having a value of
http://cv.iptc.org/newscodes/digitalsourcetype/trainedAlgorithmicMedia in the
corresponding digitalSourceType field.

EXAMPLE: A user opens Emily’s Mobile Poster Maker to create an image for a social media post. The user selects a
template, then begins customizing it, importing some existing photos in the process. The resulting image asset’s
active manifest would have a c2pa.actions assertion starting with a c2pa.created action and no
digitalSourceType field, indicating that this began as a new file. It would also have a c2pa.placed action for
each photo that the user imported, each pointing to a corresponding ingredient assertion where a componentOf
relationship is indicated. Finally, it will have additional actions recorded for other operations the user performs.

EXAMPLE: The media desk at a newspaper wants to edit a photo that was captured by a photojournalist with a C2PA-
enabled camera. The media editor opens the photo and applies crop and vignette operations. The resulting edited
photo asset’s active manifest has a c2pa.actions assertion with a c2pa.opened action pointing to an ingredient

assertion for the original photo, where a parentOf relationship is indicated. It would also have actions for the

173

http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/empty
http://cv.iptc.org/newscodes/digitalsourcetype/trainedAlgorithmicMedia

cropping and vignette edits.

18.14.3. All actions included

The actions-map-v2 can include a field, allActionsIncluded, which is a boolean value. If
allActionsIncluded is present and has a value of true, then the claim generator is stating that only those
actions listed in the actions assertion were performed on the asset. If allActionsIncluded is not present or hasa

value of false, then a Manifest Consumer may assume that other actions were performed but were not listed.

18.14.4. Fields in the actions assertion

18.14.4.1. Description

An action may include a free-text description, in the description field, of what an action does. This is most useful
for non-standard actions, however, it may also be used as a way to provide additional information about a standard

action. For example, a c2pa.edited action could have a description that says "Paintbrush tool".

18.14.4.2. Reason

If present, the reason field shall contain one of these standard values, or a custom value which conforms to the
same syntax as entity-specific namespacing, for the rationale behind the action:

« c2pa.PII.present;

« c2pa.invalid.data;

e c2pa.trade-secret.present;

+ c2pa.government.confidential.

Although the reason field can be used for any actions, only redaction-focused c2pa values are
defined at this time.

NOTE

When using a c2pa.redacted action, the reason field shall contain the rationale for the redaction. Additional

requirements for the c2pa. redacted action can be found in Section 18.14.4.7, “Parameters”.

18.14.4.3. When

Also present may be the date and time when the action took place in the when field. If included, the value of the when
field shall be compliant with CBOR date/times (RFC 8949, 3.4.1).

NOTE The when field serves as a simple non-trusted time-stamp. UTC-based times are recommended.

18.14.4.4. SoftwareAgent

The software or hardware used to perform the action can be identified via the softwareAgent field. In a v1 action,

this is a simple text string. However, for v2, softwareAgent uses the richer generator-info-map structure as

174

https://datatracker.ietf.org/doc/html/rfc8949

described in Section 10.2.3.2, “Generator Info Map”. When multiple softwareAgents are used, as described in Section
18.14.6.2, “SoftwareAgents”, then the softwareAgentIndex field shall be used to reference the softwareAgent by
its 0-based index in the softwareAgents array. A given action shall only have one softwareAgent or
softwareAgentIndex field.

NOTE These fields are useful for when the softwareAgent is not the same program as the claim
generator.

NOTE An earlier version of this specification also included an actors field, however this was removed in
version 2.0.

18.14.4.5. Digital Source Type

An action may include a digitalSourceType key, whose value shall be one of the terms defined by the IPTC or a

C2PA specific value from the list below:

http://c2pa.org/digitalsourcetype/empty

Media whose digital content is effectively empty, such as a blank canvas or zero-length video.

http://c2pa.org/digitalsourcetype/trainedAlgorithmicData

Data that is the result of algorithmically using a model derived from sampled content and data. Differs from
http://cv.iptc.org/newscodes/digitalsourcetype/trainedAlgorithmicMedia in that the

result isn’t a media type (e.g., image or video) but is a data format (e.g., CSV, pickle)

One common use case for the digitalSourceType key is in conjunction with the
NOTE c2pa.created action to provide a way to specify how the media item was created - such as

"digital capture", "digitised from negative" or "trained algorithmic media".

For "trained algorithmic" assets and data, such as those created by Generative Al, one or more ingredients may be
added to the C2PA Manifest to provide info about the inputs that led to the production of the asset. They can be
referenced from a c2pa.placed or c2pa.created action as shown in Example 8, “Example of an action for

Generative Al”.

18.14.4.6. Changes

The action may be specific to only a portion of an asset - such as a range of frames in a video or a specific area on an
image. In v1, the value was a simple text string. For v2, they are identified using a changes field, whose value is an

array of region-map objects (as defined in Section 18.2, “Regions of Interest”).

18.14.4.7. Parameters

An action may include a parameters key that provides for the specification of some action-specific information via
some pre-defined as well as the open-ended inclusion of any custom fields (and their associated values). Custom

fields shall conform to the same syntax as entity-specific namespacing, e.g. com. litware.someFieldName.

175

http://cv.iptc.org/newscodes/digitalsourcetype/
http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://cv.iptc.org/newscodes/digitalsourcetype/trainedAlgorithmicMedia

NOTE This is useful for providing extra information that would be useful to a specific workflow or C2PA
Manifest Consumer.

A claim generator that performs the same action over and over, with the same parameters & settings, may use the
multipleInstances field to indicate that the action was performed multiple times or not. If the
multipleInstances fieldis not present, then itis unknown whether the action was performed multiple times.

When using a c2pa.opened or c2pa.placed action, the ingredient field (for v1) or ingredients field (for
v2) in the parameters object shall contain the hashed JUMBF URIs to one or more related ingredient assertions. In a
c2pa.removed action, this field shall contain the hashed JUMBF URI to a componentOf ingredient assertion in a
different manifest. In some cases, only a portion of an ingredient is relevant to the action, in such cases the ingredient
assertion should contain assertion metadata containinga regionOfInterest field which would be used to specify

the relevant regions of the ingredient (as described in Section 18.15.13, “Ingredient Metadata”).

In previous versions of this specification, c2pa.transcoded and c2pa.repackaged actions
NOTE were required to reference the parentOf ingredient assertion referenced by the preceding

c2pa.opened action; claim generators can do so for compatibility with older validators.

When using a c2pa.translated action, the sourcelLanguage and targetlLanguage fields in the
parameters object shall contain RFC 5646, BCP 47 language codes.

Example 8. Example of an action for Generative Al

The c2pa.created action for an image created by a Generative Al model, could look like this, in CBOR

diagnostic notation (RFC 8949, clause 8):

// an actions assertion used to describe output of Generative AI //
{
"actions": [
{
"action": "c2pa.created",
"when": 0("2023-02-11T09:00:00Z2"),
"softwareAgent" : {
"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10"
1,
"digitalSourceType":
"http://cv.iptc.org/newscodes/digitalsourcetype/trainedAlgorithmicMedia",
"parameters" : {
"ingredients" : [
{
"url": "self#jumbf=c2pa.assertions/c2pa.ingredient.v3",
"alg": '"sha256",
"hash" : be4'..."',

"url": "self#jumbf=c2pa.assertions/c2pa.ingredient.v3__1",
"alg": "sha256",
"hash" : be4'...',

176

https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc8949

When using a c2pa. redacted action, the redacted field in the parameters object shall contain the JUMBF URI

to the assertion that has been redacted.

18.14.5. Watermarking

When using a c2pa.watermarked action, a soft binding assertion shall also be included in the C2PA Manifest to

describe the inserted watermark.

18.14.6. Action Templates

18.14.6.1. Templates

The elements of the templates array, in a v2 action, are described using a combination of common elements about
actions, along with some template-specific values. These values are combined by a C2PA Manifest Consumer with

actions of the same name, or with all actions (if the value of the action field is the special value), to get a
full picture of an action. If there are multiple templates that apply to the same

action, then the values are merged starting with the template (if present) and then applied in

the order they appear in the templates array.

Example 9. Action template example

An action and template, in CBOR diagnostic notation (RFC 8949, clause 8):

// example of a single template applied to multiple actions //

{
"actions": [
{
"action": "com.joesphoto.filter",
"when": 0("2020-02-11T09:00:00Z")
i
{
"action": "c2pa.edited",
"when": 0("2020-02-11T09:10:00Z2")
1,
{
"action": "com.joesphoto.filter",
"when": 0("2020-02-11T09:20:00Z")
},
{
"action": "c2pa.cropped",
"when": 0("2020-02-11T09:30:00Z2")
}
1,
"templates": [{
"action": "com.joesphoto.filter",
"description": "Magic Filter",

177

https://datatracker.ietf.org/doc/html/rfc8949

"digitalSourceType":
"http://cv.iptc.org/newscodes/digitalsourcetype/compositeSynthetic",
"softwareAgent" : {

"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10"

]
+

// example of using the special all actions/ * template, for all actions //
{

"actions": [

{
"action": "c2pa.created",
"when": 0("2024-03-09T20:04Z")
1,
{
"action": "c2pa.edited",
"when": 0("2025-02-11T09:10:00Z")
+,
{
"action": "c2pa.cropped",
"when": 0("2025-02-11T09:30:00Z")
}
1,
"templates": [{
llact-ionll: ll*ll’
"digitalSourceType":

"http://cv.iptc.org/newscodes/digitalsourcetype/humankdits",
"softwareAgent" : {
"name": "Jane's Human Authoring Tool",
"version": "1.0"

]

A C2PA Manifest Consumer shall take the values from the template and overlay the values from the action itself, which
will lead to replacing any with the same name.

Result
action com.j filter
[et when 2020-02-11709:00:00Z

description Magic Filter

i eType | http://cv.iptc. D

name [Joe's Photo Editor
version [2.0
schema.org [windows 10

Template
action com. filter
description Magic Filter

urceType | http://cv.iptc.org. P —> [action [com.j filter | —>
softwareAgent | name [Joe’s Photo Editor [when [2020-02-11T09:00:00Z | 2
version [2.0 h
schema.org.Soff i i [windows 10

Figure 18. Actions Template Flow

A template may include a templateParameters key that allows the inclusion of any other keys (and their
associated values). This is useful for providing extra information that would be useful to a specific workflow or C2PA
Manifest Consumer.

18.14.6.2. SoftwareAgents

If multiple softwareAgents were used, they can be listed in the softwareAgents field instead. This field is an array
of generator-info-map objects, each of which describes a different software or hardware which can then be
referenced by its index via the softwareAgentIndex field of a given action or template.

178

Example 10. Software Agents example

An example of specifying multiple agents across multiple actions, in CBOR diagnostic notation (RFC 8949, clause
8):

{
"actions": [
{
"action": "com.joesphoto.magic-avatar",
"when": 0("2020-02-11T09:00:00Z"),
"softwareAgentIndex" : 0
b,
{
"action": "c2pa.edited",
"when": 0("2020-02-11T09:10:00Z2")
"softwareAgentIndex" : 1
I
{
"action": "com.joesphoto.beauty-filter",
"when": 0("2020-02-11T09:20:00Z"),
"softwareAgentIndex" : 0
b
{
"action": "com.joesphoto.all-smiles",
"when": 0("2020-02-11T09:40:00Z2"),
"softwareAgentIndex" : 0O
+,
{
"action": "c2pa.cropped",
"when": 0("2020-02-11T09:30:00Z2")
"softwareAgentIndex" : 1
b
{
"action": "com.joesphoto.green-screen",
"when": 0("2020-02-11T09:50:00Z"),
"softwareAgentIndex" : 0
}
1,
"softwareAgents": [
{
"name": "Joe's AI Filter",
"version": "1.0",
"operating_system": "Windows 10"
}
{
"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10"
}
]
}

18.14.6.3. Icons

A template may also include an icon - an image (raster or vector) that can be used in the C2PA Manifest Consumer’s

user experience to provide some graphic representation of the action. Since a Manifest Consumer will know about all

179

https://datatracker.ietf.org/doc/html/rfc8949

the defined actions, such icons shall only be present in templates for entity-specific actions.

The value of the 1icon field, if present, shall be a hashed URI. This hashed URI shall be to either a embedded data
assertion or to a cloud data assertion. If a embedded data assertion is used, then its label shall be c2pa.icon and
shall follow the rules of assertion labels with respect to multiple instances.

NOTE This i con field is identical in structure to the icon field in the Generator Info Map of the Claim.

Manifest Consumers should also support the data box approach recommended by earlier versions of this
specification.

18.14.7. Localizations

If the metadata of an actions assertion contains a localization dictionary for a template, then the localizations shall

also apply to any action based on that template.

18.14.8. Related Actions

When a series of actions are related to each other, usually taking place at the same time, it can be useful to associate
them accordingly. The related field, in the v2 action, provides a place to list the additional actions that are related.
Each related action should be a subset of the primary action, only including those fields that differ. Just as with an
action template, the values are merged with those of the primary action, by a C2PA Manifest Consumer to get a full

picture of each related action.

18.14.9. Asset Renditions

Asset renditions are a common occurrence when distributing media on the internet. These renditions are often
created for the purpose of delivering media to consumers in differing connectivity, screen resolution, and other
environments. We can use the actions assertion to help consuming actors understand the intention of certain claim

creators to create asset renditions.

The presence of only c2pa.published, c2pa.transcoded and c2pa.repackaged actions in a
c2pa.actions assertion provides a signal to the Manifest Consumer that the signer is asserting that no editorial
changes to the digital content have happened between the ingredient asset(s) and this one.

The additional presence of a single "parentOf" ingredient provides a further signal to the Manifest Consumer that the

signer is asserting that the asset has been derived directly from that parent.

18.14.10. Soft Binding Lookup

When performing either a c2pa.opened or c2pa.placed action with an asset that does not contain a C2PA
Manifest, the claim generator may use a soft binding lookup to find the C2PA Manifest for that asset. If successful, the
claim generator should add the located C2PA Manifest as the value of the activeManifest field in the ingredient
assertion. If it does so, then the ingredient assertion shall also contain a softBindingsMatched field with a value
oftrueand a softBindingAlgorithmsMatched whose value contains at least one entry in the array.

180

NOTE

NOTE

Adding these fields indicates to the C2PA Manifest consumer that soft binding lookup was used.

Since most soft binding recovered manifests will contain a hard binding assertion that does not
match the asset being looked up, it is to be expected that validation failures will be reported in the
ingredient assertion.

An example of an ingredient action showing that its manifest was retrieved via soft binding, in CBOR diagnostic

notation (RFC 8949, clause 8):

// an ingredient assertion that had its manifest recovered via soft-binding //
{
"dc:title": "image 1.jpg",
"dc:format": "dimage/jpeg",
"relationship": "parentOf",
"softBindingsMatched": true,
"softBindingAlgorithmsMatched": [
"com.foo.watermark.1"
]
"activeManifest": {
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-D4F12A8AA322",
"hash": b64'1kjJT0108b71cL95UxgfHD3eDgkoVrCedW8n3fYTRMk="
1,

// an actions assertion pointing to the -ingredient //
{
"actions": [
{
"action": "c2pa.opened",
"when": 0("2025-04-07T09:00:00Z2"),
"softwareAgent": {
"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10"
1,
"parameters": {
"ingredients": [
{
"url": "self#jumbf=c2pa.assertions/c2pa.ingredient.v3",
"alg": '"sha256",
"hash": "b64'...'"

18.14.11. Deprecated Actions

The following actions were part of previous versions of this specification and have since been deprecated:

« C2pa.copied,

181

https://datatracker.ietf.org/doc/html/rfc8949

« c2pa.formatted;

« C2pa.version_updated,
« C2pa.printed;

« c2pa.managed;

» c2pa.produced,

+ C2pa.saved.

They shall no longer be written into c2pa.actions or c2pa.actions.v2 assertions but may appear in pre-
existing C2PA Manifests.

18.14.12. Schema and Example

The schema for c2pa.actions is defined by the actions—-map rule, and the schema for c2pa.actions.v2is
defined by the actions-map-v2 rule in the following CDDL Definition:

CDDL for Actions

actions-map = {
"actions" : [1x action-items-map], ; list of actions
? "metadata": $assertion-metadata-map, ; additional information about the assertion

}

$action-choice
Saction-choice
Saction-choice
Saction-choice
Saction-choice
Saction-choice
Saction-choice
Saction-choice
$action-choice
Saction-choice
Saction-choice
Saction-choice
Saction-choice

/= "c2pa.addedText"
/= "c2pa.adjustedColor"
/= "c2pa.changedSpeed"
/= "c2pa.color_adjustments"
/= "c2pa.converted"
/= "c2pa.copied"
/= "c2pa.created"
/= "c2pa.cropped"
/= "c2pa.deleted"
/= "c2pa.drawing"
/= "c2pa.dubbed"
/= "c2pa.edited"
/= "c2pa.edited.metadata"
$action-choice /= "c2pa.filtered"
$action-choice /= "c2pa.formatted"
$action-choice /= "c2pa.managed"
$action-choice /= "c2pa.opened"
Saction-choice /= "c2pa.orientation"
$action-choice /= "c2pa.produced"
Saction-choice /= "c2pa.placed"
$action-choice /= "c2pa.printed"
$action-choice /= "c2pa.published"
$action-choice /= "c2pa.redacted"
$action-choice /= "c2pa.removed"
$action-choice /= "c2pa.repackaged"
Saction-choice /= "c2pa.resized"
$action-choice /= "c2pa.saved"
Saction-choice /= "c2pa.transcoded"
$action-choice /= "c2pa.translated"
S$action-choice /= "c2pa.trimmed"
S$action-choice /= "c2pa.unknown"

182

https://datatracker.ietf.org/doc/html/rfc8610

Saction-choice
Saction-choice
Saction-choice
Saction-choice
Saction-choice

/= "c2pa.version_updated"

/= "c2pa.watermarked"

/= "font.edited"

/= "font.subset"

/= "font.createdFromVariableFont"
Saction-choice /= "font.charactersAdded"
Saction-choice /= "font.charactersDeleted"
Saction-choice /= "font.charactersModified"
Saction-choice /= "font.hinted"
$action-choice /= "font.openTypeFeatureAdded"

S$action-choice /= "font.openTypeFeatureModified"

S$action-choice /= "font.openTypeFeatureRemoved"

$action-choice /= "font.merged"

$action-choice /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

buuid = #6.37(bstr)

; NOTE: an earlier version of this specification also included an "actors" field, however
this was removed in version 2.0.
action-items-map = {

"action'": Saction-choice,

? "when": tdate, ; time-stamp of when the action occurred.

? "softwareAgent": tstr .size (1..max-tstr-length), ;The software agent that performed the
action.

? "changed": tstr .size (1..max-tstr-length), ; A semicolon-delimited list of the parts of
the resource that were changed since the previous event history. If not present, presumed to
be undefined. When tracking changes and the scope of the changed components is unknown, it
can be assumed that anything could have changed.

? "dinstanceID": buuid, ; The value of the xmpMM:InstanceID property for the modified
(output) resource

? "parameters": parameters-map, ; Additional parameters of the action. These will often
vary by the type of action

? "digitalSourceType": tstr .size (1..max-tstr-length), ; One of the defined source types
at https://cv.iptc.org/newscodes/digitalsourcetype/

}

parameters-map = {
? "ingredient": $hashed-uri-map, ; A hashed-uri to the ingredient assertion that this
action acts on
? "description": tstr .size (1..max-tstr-length) ; Additional description of the action
* tstr => any

}

; Version 2 (v2) of the actions assertion

$action-reason /= "c2pa.PII.present"

$action-reason /= "c2pa.invalid.data"

$action-reason /= "c2pa.tradesecret.present"

$action-reason /= "c2pa.government.confidential"

$action-reason /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

actions-map-v2 = {

"actions" : [1x action-item-map-v2], ; list of actions

? "templates": [1x Saction-template-map-v2], ; list of templates for the actions

? "softwareAgents": [1x $generator-info-map], ; A list of of the software/hardware that
did the action

? "metadata": $assertion-metadata-map, ; additional information about the assertion
? "allActionsIncluded": bool ; If present & true, indicates that no actions
took place that were not included in the actions list.

}

action-common-map-v2 = {

183

? "softwareAgent": S$generator-info-map, ; Description of the software/hardware that did
the action

? "softwareAgentIndex": int, ; 0-based index into the softwareAgents array in the actions-
map-2

? "description": tstr .size (1..max-tstr-length), ; Additional description of the action,
important for custom actions

? "digitalSourceType": tstr .size (1..max-tstr-length), ; One of the defined source types
at https://cv.iptc.org/newscodes/digitalsourcetype/ or 1in this specification

}

; NOTE: an earlier version of this specification also included an "actors" field, however
this was removed in version 2.0.
action-item-map-v2 = {

"action": S$action-choice , ; the type of action

action-common-map-v2, ; now additional common items

? "when": tdate, ; time-stamp of when the action occurred.

? "changes": [1x region-map], ; A list of the regions of interest of the resource that
were changed. If not present, presumed to be undefined.

? "related": [1x action-item-map-v2], ; List of related actions

? "reason": Saction-reason, ; the reason why this action was performed, required when the
action is ‘c2pa.redacted’

? "parameters": parameters-map-v2 ; Additional parameters of the action. These will often
vary by the type of action
}

action-template-map-v2 = {
"action'": S$action-choice / "x'", ; templates support the additional special "x" option
action-common-map-v2, ; additional common -qitems
? "qcon'": S$hashed-uri-map, ; hashed_uri reference to an embedded data assertion
? "templateParameters'": parameters-common-map-v2 ; Additional parameters of the template.

}

parameters-common-map-v2 = (
* tstr => any

)

parameters-map-v2 = {

? "redacted": $jumbf-uri-type, ; A JUMBF URI to the redacted assertion, required when the
action is ‘c2pa.redacted’

? "ingredients": [1* $hashed-uri-map], ; A list of hashed JUMBF URI(s) to the ingredient
(v2 or v3) assertion(s) that this action acts on

? "sourcelLanguage": tstr .size (1l..max-tstr-length), ; BCP-47 code of the source language
of a “c2pa.translated’ action

? "targetLanguage": tstr .size (1l..max-tstr-length), ; BCP-47 code of the target language
of a ‘c2pa.translated’ action

? "multipleInstances": bool, ; was this action performed multiple times

parameters-common-map-v2, ; anything from the common parameters

}

Standard actions specific to font assets are described in:

CDDL for Font actions

; Maps, ranges and parameters for font-specific actions.

; Multiple font actions work with respect to ranges of Unicode values.
font-unicode-range-map = {

"start": uint, ; Inclusive start

"stop": uint, ; Inclusive end

}

184

; Font parameter used by font.subset, font.charactersAdded,
; font.charactersDeleted, and font.charactersModified.
font-parameter-unicode-ranges-map = {

"ranges": [1* font-unicode-range-map] ; Array of unicode ranges

}

; Ranges for font instantiation parameters

font-weight-range = 1..1000 ; Valid weights or thickness for the font. 400 is normal.
font-width-range = 0.0..1000.0 ; Percentage of normal from 0% to 1000%. 100% is normal
width.

font-slant-range = -90.0..90.0 ; Angle of slant with 0 degrees being no slant.

; Font parameters used when creating an instance of a font from a variable font.
; The different 'variation axis’® for the fonts are detailed here. The tag
; names for the different axes are 1in parenthesis in the comments for each
; parameter.
font-parameter-created-from-variable-font-map = {
? "weight": font-weight-range, ; Weight(wght) or thickness of the font to be instantiated.
? "width": font-width-range, ; Width(wdth) or narrowness of the letterforms of font to be
instantiated.
? "Hqtalic": bool, ; Get the +dtalic(ital) version of the font.
? "slant": font-slant-range, ; The slant(slnt) angle of the font.
? "optical-size": int / float, ; The optical size(opsz) of the font, typically you want to
match the font size requested.
* tstr => any ; Name and type of the custom axes.

}

Example 11. Example of an v2 action

An example of a v2 action, in CBOR diagnostic notation (RFC 8949, clause 8), is shown below:

{
"actions": [
{
"action": "c2pa.filtered",
"when": 0("2020-02-11T09:00:00Z2"),
"parameters": {
"instanceID": 37(h'ed610ae51f604002be3dbf0c589a2f1f')
1,
"softwareAgent" : {
"name": "Joe's Photo Editor",
"version": "2.0",
"operating_system": "Windows 10"
}
1,
{
"action": "c2pa.cropped",
"when'": 0("2020-02-11T09:30:00Z")
}
1,
"metadata": {
"dateTime": 0("2021-06-28T16:34:11.457Z2"),
"reviewRatings": [
{
"value": 1,
"explanation": "Content bindings did not validate"
}
]
}

185

https://datatracker.ietf.org/doc/html/rfc8949

18.15. Ingredient

18.15.1. Description

When assets are composed together, for example placing an image into a layer in an image editing tool or an audio
clip into a video in a video editing tool, it is important that information about any claim from the placed asset be
recorded into the new asset to provide a way to understand the entire history of the new composed asset. This is also

true when an existing asset is used to create a derived asset or asset rendition.

Another common use for an ingredient is to describe some assets or data that were used as input to a process, such as
the training or inference requests associated with an Al/ML model.

There are three versions of the ingredients assertion - the original vl (which shall have a label of
c2pa.ingredient), the improved v2 (which shall have a label of c2pa.ingredient.v2), and the further-
refined v3 (which shall have a label of c2pa.ingredient.v3), which addresses the issue of validating ingredients

after redaction.

Since there will most likely be more than one ingredient assertion, the use of the monotonically
NOTE increasing index in the label would be used (e.g., c2pa.ingredient.v3,
c2pa.ingredient.v3__1,c2pa.ingredient.v3__2).

18.15.2. Establishing unique identifiers

If the ingredient being added contains a C2PA Manifest, then its unique identifier shall be taken from the manifest
label of the JUMBF superbox containing the ingredient’s active C2PA Manifest, and it is not necessary to provide the
optional instanceID field of the ingredient assertion. When the claim generator provides the optional
instancelD field of the ingredient assertion, then the value of the unique identifier shall be determined as specified
by Section 8.3, “Identifying Non-C2PA Assets”.

A claim generator can provide an instancelID field in the ingredient assertion even if the
ingredient has a C2PA Manifest.

NOTE

18.15.3. Relationship

When adding an ingredient, its relationship to the current asset shall be described. The possible values of the
relationship field and their meanings are shown in Table 10, “Ingredient Relationships”.

Table 10. Ingredient Relationships

186

Value Meaning

parentOf The current asset is a derived asset or asset rendition of
this ingredient. This relationship value is also used with
update manifests.

componentOf The current asset is composed of multiple parts, this
ingredient being one of them.

inputTo This ingredient was used as input to a computational
process, such as an Al/ML model, that led to the creation
or modification of this asset.

When adding an ingredient assertion, a claim generator shall add a c2pa.actions assertion (see Section 18.14,
“Actions”), if one does not already exist in the active manifest. Depending on the type of ingredient, one of the
following new entries shall be added to the actions array ofa c2pa.actions assertion.

« When adding an ingredient with a parentOf relationship, a c2pa.opened action shall be added to the
actions array.

« When adding an ingredient with a componentOf relationship, a c2pa.placed action shall be added to the

actions array.

This requirement only applies to Standard Manifests, since recording actions is only supported in that manifest type.

18.15.4. Title

If present, the value of dc:title shall be a human-readable name for the ingredient, which may be taken either
from the asset’s XMP or the asset’s name in a local or remote (e.g., cloud-based) filesystem. If the ingredient does not

have a specific name, then a description of the ingredient may be used instead.

18.15.5. Format

If present, the value of dc: format shall be the IANA Media Type for the ingredient. It is recommended that a claim
generator should provide this field and it shall contain a valid value. When describing a multi-file ingredient, such as
the data set of an Al/ML model, the dc: format field shall be set tomultipart/mixed.

18.15.6. Schema and Example

The CDDL Definition for this type is:

; Assertion that describes an ingredient used in the asset
ingredient-map = {
"dc:title": tstr, ; name of the ingredient
"dc:format": format-string, ; Media Type of the dingredient
? "documentID": tstr, ; value of the ingredient's “xmpMM:DocumentID®
"instanceID": tstr, ; unique 1identifier, such as the value of the ingredient's
" xmpMM: InstancelID’

187

https://datatracker.ietf.org/doc/html/rfc8610

"relationship": $relation-choice, ; The relationship of this ingredient to the asset it 1is
an ingredient of.

? "c2pa_manifest": Shashed-uri-map, ; hashed_uri reference to the C2PA Manifest of the
ingredient

? "thumbnail": $hashed-uri-map, ; hashed_uri reference to an dingredient thumbnail

? "validationStatus": [1x $status-map] ; validation status of the ingredient

? "metadata": $assertion-metadata-map ; additional information about the assertion

}

; Version 2 (v2) of the ingredient assertion
; Assertion that describes an ingredient used in the asset
ingredient-map-v2 = {

"dc:title": tstr, ; name of the ingredient

"dc:format": format-string, ; Media Type of the dingredient

"relationship": $relation-choice, ; The relationship of this ingredient to the asset 1t is
an ingredient of.

? "documentID": tstr, ; value of the dingredient's "“xmpMM:DocumentID®

? "dinstancelID": tstr, ; unique identifier, such as the value of the ingredient's
" XmpMM: InstancelD®

? "data" : Shashed-uri-map / $hashed-ext-uri-map, ; hashed_uri reference to an embedded
data assertion or a hashed_ext_uri to external data

? "data_types": [1x Sasset-type-map], ; additional information about the data's type to
the ingredient V2 structure.

? "c2pa_manifest": Shashed-uri-map, ; hashed_uri reference to the C2PA Manifest of the
ingredient

? "thumbnail": $hashed-uri-map, ; hashed_uri reference to a thumbnail in a embedded data
assertion

? "validationStatus": [1x $status-map] ; validation status of the ingredient

? "description": tstr .size (1..max-tstr-length) ; Additional description of the
ingredient

? "informational_URI": tstr .size (1..max-tstr-length) ; URI to an informational page
about the dingredient or its data

? "metadata": $assertion-metadata-map ; additional information about the assertion

}

; Version 3 (v3) of the ingredient assertion
; Assertion that describes an ingredient used in the asset
ingredient-map-v3 = {

? "dc:title": tstr, ; name of the dingredient

? "dc:format": format-string, ; Media Type of the 1ingredient

"relationship": $relation-choice, ; The relationship of this ingredient to the asset it 1is
an ingredient of.

? "validationResults": $validation-results-map, ; Results from the claim generator
performing full validation on the 1dingredient asset

? "dnstanceID": tstr, ; unique identifier such as the value of the ingredient's
*xmpMM: InstancelID’

? "data" : Shashed-uri-map / $hashed-ext-uri-map, ; hashed_uri reference to an embedded
data assertion or a hashed_ext_uri to external data

? "dataTypes": [1x Sasset-type-map], ; additional information about the data's type to
the dingredient V3 structure

? "activeManifest": $hashed-uri-map, ; hashed_uri to the box corresponding to the active
manifest of the dingredient

? "claimSignature": $hashed-uri-map, ; hashed_uri to the Claim Signature box in the C2PA
Manifest of the dingredient

? "thumbnail": $hashed-uri-map, ; hashed_uri reference to a thumbnail in a embedded data
assertion

? "description": tstr .size (1..max-tstr-length), ; Additional description of the
ingredient

? "informationalURI": tstr .size (1..max-tstr-length), ; URI to an informational page
about the ingredient or its data

? "softBindingsMatched": bool, ; Whether soft bindings were matched

? "softBindingAlgorithmsMatched": [1x tstr] ; Array of algorithm names used for
discovering the active manifest

188

? "metadata": $assertion-metadata-map ; additional information about the assertion

}
format-string = tstr .regexp "A\\w+\/[-+.\\w]+$"

; Choices that describe the reason for how the ingredient is related to the asset
$Srelation-choice /= "parentOf"

$relation-choice /= "componentOf"

$relation-choice /= "inputTo"

An example in CBOR diagnostic notation (RFC 8949, clause 8):

"dc:title": "image 1.jpg",
"metadata": {
"dateTime": 0("2021-06-28T16:49:32.874Z"),
"reviewRatings": [
{
"value": 5,
"explanation": "Content bindings validated"
}
1
}
"dc:format": "dimage/jpeg",
"thumbnail": {
"url": "self#jumbf=c2pa.assertions/c2pa.thumbnail.ingredient",
"hash": b64'UjRAYWiAq41fCRDmksWALDIN/XtHHFFwMWymsZsm3j8="
},
"relationship": "parentOf",
"activeManifest": {
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-D4F12A8AA322",
"hash": b64'1kjJT0108b71cL95UxgfHD3eDgk9VrCedW8n3fYTRMk="
Iy
"claimSignature": {
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32~
D4F12A8AA322/c2pa.signature",
"hash": b64'85KAvU3+3YgtIjj6IVOfzKwj8si/85+gevVSK2Iw+S0O="
I
"validationResults": {
"activeManifest": {
"success": [
{
"code": "claimSignature.validated",
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.signature"
3
"code": "sdigningCredential.trusted",
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.signature"
1, q
"code": "timeStamp.validated",
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.signature"
3
"code": "timeStamp.trusted",
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.signature"
1, q
"code": "assertion.hashedURI.match",
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-

189

https://datatracker.ietf.org/doc/html/rfc8949

D4F12A8AA322/c2pa.assertions/c2pa.ingredient.v3"
}
1,
"informational": [{
"code": "signingCredential.ocsp.skipped",
"url": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.signature"
1,
"failure": []
I
"ingredientDeltas": [{
"ingredientAssertionURI": "self#jumbf=/c2pa/urn:c2pa:5E7BO1FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.assertions/c2pa.ingredient.v3",
"validationDeltas": {
"success": [],
"informational”: [],
"failure": [{
"code": "assertion.hashedURI.mismatch",
"url": "self#jumbf=/c2pa/urn:c2pa:FO95F30E-6CD5-4BF7-8C44~
CE8420CA9FB7/c2pa.assertions/c2pa.metadata"
1]
}
IRt
"ingredientAssertionURI": "self#jumbf=/c2pa/urn:c2pa:FO95F30E-6CD5-4BF7-8C44-
CE8420CA9FB7/c2pa.assertions/c2pa.ingredient.v3",
"validationDeltas": {
"success": [],
"informational”: [],
"failure": [{
"code": "signingCredential.untrusted",
"url": "self#jumbf=/c2pa/urn:c2pa:72C28A7C-7F5B-4301-B373-
3183C10AF7C5/c2pa.signature"
}H

18.15.7. Description field

An ingredient may include a free-text description, in the description field, of what an the ingredient is or is used
for. This is useful for situations where neither the title nor the format is sufficient.

18.15.8. Ingredient Data

18.15.8.1. Standard Usage

In certain use cases, such as Generative Al it may be important to have ingredients where the data of the ingredient is
provided - either embedded into the C2PA Manifest or via a URL that references the data. This is accomplished
through the data field in the ingredient, which uses a hashed-uri to point to an embedded data assertion or a
hashed-ext-uri to point to an external reference.

NOTE Previous versions of this specification allowed the hashed_uri to point to a data box.

190

Using an embedded data assertion implies that its content will be embedded in this C2PA Manifest and in any future
C2PA Manifest (unless redacted) that contains this asset as an ingredient. Claim generators should take the size of this

field into consideration when choosing whether to embed data.

Example 12. Example of ingredients with data

An example of some ingredients with data, in CBOR diagnostic notation (RFC 8949, clause 8):

// prompt's data box //

{
"dc:format": "text/plain",
"data" : 'pirate with bird on shoulder'
"dataTypes": [{
"type'": "c2pa.types.generator.prompt",
1
}
// ingredient (prompt) //
{
"dc:title": "prompt",
"dc:format": "text/plain",
"relationship": "4dinputTo",
"data": {
"url": "self#jumbf=c2pa.assertions/c2pa.embedded-data",
"alg" : "sha256",
"hash" : be4'...',
}
}

// ingredient (model) //

{
"dc:title": "model",
"dc:format": "application/octet-stream",
"dataTypes": [
{
"type": "c2pa.types.generator",
Iy
{
"type": "c2pa.types.model.tensorflow",
"version": "1.0.0",
b,
{
"type": "c2pa.types.tensorflow.hubmodule",
"version": "1.0.0",
}
1,
"relationship": "inputTo",
"data": {
"url": "https://tfhub.dev/deepmind/bigbigan-resnet50/1?tf-hub-format=compressed",
"alg" : "sha256",
"hash" : be4'...',
b
"description": "Unsupervised BigBiGAN image generation & representation learning

model trained on ImageNet with a smaller (ResNet-50) encoder architecture.",
"informationalURI": "https://tfhub.dev/deepmind/bigbigan-resnet50/1",
}

191

https://datatracker.ietf.org/doc/html/rfc8949

There are also use cases where it is important to identify information about the ingredient’s data but it is neither
possible to embed it nor provide a valid URL - for example, when describing the use of a private/internal Al model. For
those cases, an asset type, as the value of the data_types field, can be provided for more clarity on the format and
description of that data.

Example 13. Example of ingredients with data_types

An example of an ingredient without a hashed uri, in CBOR diagnostic notation (RFC 8949, clause 8):

// ingredient (private model) //

{
"dc:title": "model",
"dc:format": "application/octet-stream",
"relationship": "4dinputTo",
"dataTypes": [
{
"type": "c2pa.types.generator",
1,
{
"type": "c2pa.types.model.tensorflow",
"version": "1.5.0",
}
1,
"description": "Joe's private generative AI model",
"informationalURI": "https://www.example.com/joes-model-info.html"
}

18.15.8.2. Multi-file Ingredients

In some cases, an ingredient may be represented as a set of multiple files, such as the training data set for an Al/ML
model. It is recommended that in those instances that the C2PA Manifest be included in the ingredient assertion and
that the C2PA Manifest for the full data set include an asset reference assertion that references where to find those
files.

NOTE This method is well suited for when working with a collection of assets where all of the files are not
contained in the same hierarchy.

18.15.9. Informational URI

When it is necessary to provide a URL to a web page with information about the ingredient, such as detailed
information about an Al/ML model, it should be placed as the value of the informationalURI field of the
ingredient assertion.

NOTE The informationalURI is not an authenticated link to the content of the ingredient itself, but
something more generally of interest to a human user.

NOTE Older (and deprecated) versions of the ingredient assertion named this field
informational_URI.

192

https://datatracker.ietf.org/doc/html/rfc8949

18.15.10. Thumbnails

When adding an ingredient, it may be useful to also include a thumbnail of the ingredient to help establish the state of
the ingredient at the time of import. For that purpose, a thumbnail shall be added as a thumbnail assertion and
referenced herein via a hashed-uri reference.

Manifest Consumers should also support the data box approach recommended by earlier versions of this
specification.

18.15.11. Existing manifests

18.15.11.1. General

If the ingredient has an existing C2PA Manifest Store, then all C2PA Manifests in the ingredient’s C2PA Manifest Store
that have undergone validation, and that do not already exist in the asset’s C2PA Manifest Store, shall be copied by
the claim generator into the asset’s C2PA Manifest Store, except as outlined in Section 18.15.12, “Copying existing

manifests” or when directed not to do so (for example via user input or via configuration).

The claim generator should also copy into the asset’s C2PA Manifest Store any additional C2PA Manifests that were
not validated, as well as any additional JUMBF boxes and superboxes appearing in the C2PA Manifest Store that are

not recognized as C2PA Manifests.

Copying these additional elements supports compatibility with custom assertions and future
NOTE constructs that may reference elements of the C2PA Manifest Store in ways that the claim generator
does not recognize.

18.15.12. Copying existing manifests

18.15.12.1. Determining the need

To determine whether or not an existing manifest from the ingredient’s C2PA Manifest Store needs to be copied into

the asset’s C2PA Manifest Store, the claim generator shall:

1. Validate the ingredient per the process described in Section 18.15.12.4, “Ingredient validation”. In case of
validation failures, the claim generator may skip the rest of these steps if directed to do so (for example, via user

input or via configuration).

2. For each manifest in the ingredient’s C2PA Manifest Store, compare its URN identifier with the URN identifiers of
each C2PA Manifest already present in the asset’s C2PA Manifest Store.

a. If amatch is found, compute and compare the hash of the manifest box from ingredient’s C2PA Manifest Store

to the hash of the matching manifest box from the asset’s C2PA Manifest Store

i. If the hashes match, then the claim generator shall not copy the manifest from the ingredient’s C2PA
Manifest Store to the asset’s C2PA Manifest Store.

ii. If the hashes do not match:

193

A. The claim generator shall check if any assertions from either manifest were redacted (optionally

utilizing the list of redactions compiled in the Performing explicit validation process).
. If the validator is able to determine that the hashes differ only due to redaction, then:

1. If all redactions were applied against the manifest already present in the asset’s C2PA
Manifest Store, then the claim generator shall not copy the manifest from the ingredient’s
C2PA Manifest Store into the asset’s C2PA Manifest Store.

2. If all redactions were applied against the manifest from the ingredient’s Manifest Store, then
the claim generator shall replace the manifest in the asset’s C2PA Manifest Store with the

manifest from the ingredient’s C2PA Manifest Store.

3. If different redactions were applied against both the C2PA Manifest from the ingredient’s
C2PA Manifest Store and the asset’s C2PA Manifest Store, then the claim generator shall
redact as many assertions as needed from the existing manifest in the asset’s C2PA Manifest
Store to result in a union of the two sets of redactions.

Il. In all other cases, then the claim generator shall copy the manifest from the ingredient’s C2PA
Manifest Store, re-label it with an updated URN per the process described in Unique Identifiers,
and insert the re-labeled version into the asset’s C2PA Manifest Store.

NOTE The process for determining whether the hashes differ only due to redaction is left up to the
validator.

18.15.12.2. Examples

EXAMPLE: Consider a claim generator D that is importing ingredients. It begins by importing ingredient B, which
itself has an ingredient Manifest A. After validating both manifests, claim generator D copies Manifests B and A
into Asset D 's C2PA Manifest Store. Then it imports ingredient C, which also includes a redacted version of
Manifest A. After validating Manifest C and the redacted Manifest A, it compares the hashes of both versions of
Manifest A. Knowing that the version of Manifest A in ingredient C was redacted, claim generator D over-writes
the version of Manifest A already present in asset D 's C2PA Manifest Store with the redacted version of Manifest

A from ingredient C.

EXAMPLE: Consider the same scenario as above, except that the version of Manifest A in ingredient C failed
validation because one of its assertions failed a hash comparison. In this situation, Claim generator D copies
Manifest A from ingredient C, re-labels it with a new URN, and places the re-labeled copy in asset D 's C2PA
Manifest Store.

NOTE A C2PA Manifest Store can contain JUMBF boxes or superboxes that are not C2PA Manifests. They
need not be copied as part of this process.

194

18.15.12.3. Adding manifest references to the ingredient assertion

If the active manifest of the ingredient has been copied into the asset’s C2PA Manifest Store, then a URI reference to
the ingredient’s active C2PA Manifest box shall be stored as the value of the activeManifest field in the ingredient
assertion, and an additional URI reference to the active Manifest’s C2PA Claim Signature box shall be stored as the

value of claimSignature.

For a C2PA Manifest present in the C2PA Manifest Store, hashed_uri’s shall be used as the values
for both of the 1ingredient assertion’s “activeManifestandclaimSignature fields.

NOTE Providing both values enables efficient ingredient validation and also supports validation if one of
the ingredient’s assertions were redacted.

18.15.12.4. Ingredient validation

18.15.12.4.1. General

In addition, when the ingredient assertion references a C2PA Manifest, the claim generator shall also act as a
validator, performing validation of the ingredient as described in validation steps. The result of that validation - all
success codes, informational codes, and failure codes - shall be used in populating the ingredient assertion’s
validationResultsorvalidationStatus field as described below. This field is required to be present so that

it can be used in future validations.

The presence of a validationStatus (ingredient v2) or validationResults (ingredient v3)
with a failure status is considered an explicit statement by the claim generator that an actor has
acknowledged validation errors in the ingredient’s C2PA Claim itself and has chosen to proceed with

NOTE incorporating the ingredient.

As described in Section 15.3, “Displaying Manifest Information”, it is desirable for a claim generator
to prominently raise warnings so that an actor making use of an asset with a flawed provenance

history is making an informed decision of how to proceed.

18.15.12.4.2. V2 ingredient assertions (DEPRECATED)

In av2 ingredient assertion with no c2pa_man-i fest field, the validationStatus field is optional, but if present

may contain an empty array.

In a v2 ingredient assertion with c2pa_mani fest field, each object in the validationStatus array consists of a
code field whose value describes the validation status of a specific part of the manifest along with an optional
success field whose boolean value indicates whether the code reflects success (true) or failure (false). An optional
description of the validation status may be present in the explanation field if there is a need for an additional
human readable explanation. In addition, each status-map object has a url field which should contain, in the case
of failures, a JUMBF URI reference to the specific element in the manifest about which the status refers. Depending on
the code, the url will be to a C2PA Claim, a C2PA Claim Signature or a specific C2PA Assertion. Status codes are
defined in Section 15.2.2, “Standard Status Codes”.

195

Custom status codes are permitted when a claim generator has a need to record some process-specific status

information. The code shall conform to the same syntax as entity-specific namespaces (e.g.

com.litware.malformedFrobber)andthe validationStatus object shall containa success boolean.

18.15.12.4.3. V3 ingredient assertions

In av3ingredient assertion with no activeManifest field, the validationResults field shall not be present.

In a v3 ingredient assertion with an activeManifest field, the validationResults field shall contain a

validation-results—map object which in turn contains:

L

2.

InactiveManifest, full validation results for the ingredient’s active manifest.

In ingredientDeltas, delta validation results for every ingredient assertion, that contains an
activeManifest field, in every manifest in the ingredient’s C2PA Manifest Store. The delta validation results
for an ingredient assertion shall contain the following:

a. IningredientAssertionURI, the URI of the ingredient assertion.

b. In validationDeltas, the validation results for the manifest referenced by the ingredient assertion,
omitting any status values present in the activeManifest field of the validationResults field in the
ingredient assertion (or for v1 or v2 ingredient assertions, the validationStatus field). This status value
comparison shall consider the status type (success, informational, or failure), code, and ur, ignoring other
fields.

EXAMPLE: Consider a multi-ingredient Manifest E with a complex lineage. Claim generator E adds Manifest C
and Manifest D as ingredients via ingredient assertions. Manifest C itself has Manifest A and Manifest B added via
ingredient assertions. Manifest D also has Manifest A added via an ingredient assertion. When adding Manifest C,
claim generator E creates an ingredient assertion with a validationResults object that stores validation
results for the active manifest of C in activeManifest, and delta validation results for manifests A and B in
ingredientDeltas. The ingredientDeltas array will have two elements: one for the delta results
compared against the activeManifest object in the validationResults object in Manifest C 's
ingredient assertion of Manifest B (with a hashed-uri link to said ingredient assertion in Manifest C), and
another element of the same attributes but for Manifest C 's ingredient assertion of Manifest A. And likewise
when adding Manifest D, claim generator E creates an ingredient assertion which stores validationResults
for both the activeManifest of D, as well as ingredientDeltas with a single array element containing
delta validation results compared against the activeManifest object in the validationResults object
in Manifest D 's ingredient assertion of Manifest A.

NOTE While this is an intentionally contrived example, it is designed to elucidate the expectation of
how the validationResults data structure is to be used.

Each validation result (as described using a status-codes-map), consists of an array of success,

informational, and failure codes. Each code is represented as a status—map object which shall contain a

code field with the status code. In addition, it may contain a url field with a JUMBF URI reference to the specific

196

element in the manifest about which the status refers, and an optional explanation field with a human-readable
explanation of the status. Status codes are defined in Section 15.2.2, “Standard Status Codes”.

Custom status codes are permitted when a claim generator has a need to record some process-specific status
information. The «code shall conform to the same syntax as entity-specific namespaces (e.g.
com. litware.malformedFrobber).

18.15.13. Ingredient Metadata

As described in assertion metadata, the metadata field of the ingredient assertion may contain metadata about the
ingredient, such as the date and time when it was generated or other data that may help Manifest Consumers to make
informed decisions about the provenance or veracity of the assertion data.

One common use for the metadata field is when only a portion of an ingredient is used in the creation or editing of
an asset. In such cases, the metadata field should contain a regionOfInterest field (as described in Section
18.3.6, “Region of Interest”) which describes the relevant portions of the ingredient that were used. An example of this

can be found in Example 14, “Example of ingredient with metadata containing regions”.

Although the field contains only a single region of interest, the region-map object can specify
NOTE multiple regions as the values of its region field. This would be useful when multiple parts of a
single ingredient are involved.

Example 14. Example of ingredient with metadata containing regions

An example of an ingredient containing a region of interest in its metadata, in CBOR diagnostic notation (RFC
8949, clause 8):

{

"dc:title": "someVideo.mp4",
"metadata": {
"regionOfInterest" : {

"description": "10 seconds of audio",
"region": [
{

"type": "temporal",
"time": {
l|typell: Ilnpt"’
"start": "10",

llend": "20"
}
1,
{
"type": "didentified",
"item": {
"jdentifier": "track_id",
llvaluell: ll3ll
}
}
]
}
}
"dc:format": "video/mp4",

197

https://datatracker.ietf.org/doc/html/rfc8949
https://datatracker.ietf.org/doc/html/rfc8949

"relationship": "componentOf",

"activeManifest" : {
"url": "self#jumbf=/c2pa/urn:c2pa:98782815-5116-4d78-93de-3f5d8b4f4615",
"hash": b64' TEWww2UCIR/e8mmROXvzkFVZYTJI59Q8Ip4nkYxrS/Ys="

+,
"claimSignature" : {
"url": "self#jumbf=/c2pa/urn:c2pa:98782815-5116-4d78-93de-
3f5d8b4f4615/c2pa.signature",
"hash": b64'ICIkYzpmb3JtYXQiOiAiaWlhZ2UvanB1lZyIsCiAgImR="

s

"validationResults": { ... }

}

18.15.14. Soft Bindings

An active manifest may include a C2PA Manifest as an ingredient (via a parentOf relationship) that was discovered
using a soft binding lookup. If the Claim Generator does include such a C2PA Manifest, then it shall include a
softBindingsMatched field indicating true, and a softBindingAlgorithmsMatched field containing an
array of strings (of soft binding algorithm names that were used to discover the ingredient C2PA Manifest). The
algorithm names shall be listed with the C2PA Soft Binding Algorithm List as identified within the a'lg field of entries
in that list.

18.16. Metadata

18.16.1. Description

In earlier versions of this specification, there were individual assertions for each metadata standard (e.g., IPTC, EXIF).
In this version, there now exists a category of assertions that shall be used to represent metadata, in a standardized
serialization. Having the metadata in an assertion establishes that the metadata in that assertion is significant,
because it has been explicitly included in the C2PA Manifest, and signed by a specific signer - thus enabling
cryptographic validation and attribution of the data. In addition, by using a common serialization, it enables manifest

consumers to process it in a consistent manner.

NOTE These assertions can represent existing standards or they can be private specifications.

18.16.2. Common Requirements

A metadata assertion shall have a label which ends in the string . metadata, and is preceded by either the standard
c2pa identifier or any other provided that it conforms to the same syntax as entity-specific namespaces. For example,

acom. litware.metadata assertion would be valid.

Each metadata assertion shall contain a single JSON content type box containing the JSON-LD serialization of one or
more metadata values. The @context property within the JSON-LD object shall be included, and used to provide
context / namespaces for the metadata standards being specified. The recommended procedure to create this JSON-
LD object is to first create an XMP Data Model representation of the metadata and then serialize that to JSON-LD
according to JSON-LD serialization of XMP. The JSON-LD would then be stored as a JSON content type box.

198

https://www.w3.org/TR/json-ld
https://www.iso.org/standard/57421.html
https://www.iso.org/standard/79384.html

18.16.3. The c2pa.metadata assertion

This specification defines one metadata assertion, whose label is c2pa.metadata, which is used to represent a
subset of common metadata schemas that may be used in any C2PA Manifest. The metadata fields that may be
included in this assertion are documented in Appendix B, Implementation Details for c2pa.metadata.

NOTE Custom labelled metadata assertions can contain any values from any schemas.

Example 15. c2pa.metadata assertion for an image

An example of an c2pa.metadata assertion for an image:

"@Qcontext" : {
"exif": "http://ns.adobe.com/exif/1.0/",
"exifEX": "http://cipa.jp/exif/2.32/",
"tiff": "http://ns.adobe.com/tiff/1.0/",
"Iptc4xmpExt": "http://iptc.org/std/Iptc4xmpExt/2008-02-29/",
"photoshop" : "http://ns.adobe.com/photoshop/1.0/"
I
"photoshop:DateCreated": "Aug 31, 2022",
"Iptcd4xmpExt:DigitalSourceType":
"http://cv.iptc.org/newscodes/digitalsourcetype/digitalCapture",
"exif:GPSVersionID": "2.2.0.0",
"exif:GPSLatitude": "39,21.102N",
"exif:GPSLongitude": "74,26.5737W",
"exif:GPSAltitudeRef": 0,
"exif:GPSAltitude": "100963/29890",
"exif:GPSTimeStamp": "18:22:57",
"exif:GPSDateStamp": '2019:09:22",
"exif:GPSSpeedRef": "K",
"exif:GPSSpeed": "4009/161323",
"exif:GPSImgDirectionRef": "T",
"exif:GPSImgDirection": "296140/911",
"exif:GPSDestBearingRef": "T",
"exif:GPSDestBearing": "296140/911",
"exif:GPSHPositioningError": '"13244/2207",
"exif:ExposureTime": "1/100",
"exif:FNumber": 4.0,
"exif:ColorSpace": 1,
"exif:DigitalZoomRatio": 2.0,
"tiff:Make": "CameraCompany",
"tiff:Model": "Shooter S1",
"exifEX:LensMake": "CameraCompany",
"exifEX:LensModel": "17.0-35.0 mm",
"exifEX:LensSpecification": { "@list": [1.55, 4.2, 1.6, 2.4] }

Example 16. c2pa.metadata assertion for a PDF

An example of an c2pa.metadata assertion for a PDF:

199

"@Qcontext" : {

"dc" : "http://purl.org/dc/elements/1.1/",
"xmp" : "http://ns.adobe.com/xap/1.0/",
"pdf" : "http://ns.adobe.com/pdf/1.3/",
"pdfx": "http://ns.adobe.com/pdfx/1.3/"

1,

"dc:created": "2015 February 3",

"dc:title": [
"This 1is a test file"

1,
"xmp:CreatorTool": "TeX",
"pdf:Producer": "pdfTeX-1.40.14",

"pdf:Trapped": "Unknown",

"pdfx:PTEX.Fullbanner": "This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live
2013) kpathsea version 6.1.1"
}

18.16.4. Redaction of c2pa.metadata

Although the redaction process works in such a way that only an entire assertion could be redacted (see Section 6.8,
“Redaction of Assertions”), the use of an update manifest enables partial redaction by removing the original and then
placing the new, reduced, versions in the update manifest. This new assertion would be presented in a user
experience in association with the signer of the update manifest and not with the signer of the C2PA Manifest that has

been redacted.

For example, a metadata assertion containing both location data and camera information which needs to have the
location data redacted could be done through an update manifest with a new metadata assertion containing only the

camera information.

18.17. Time-stamps

18.17.1. Description

In some provenance workflows, a standard or update manifest is created offline, where it is not possible to obtain a
trusted time-stamp (as per RFC 3161) from a TSA at the time of signing. However, in such cases those signing

certificates will expire after a certain period of time, thus leading to an invalid C2PA Manifest.

To prevent that expiration, a trusted time-stamp can be added at a later point in time (provided the certificate has not
yet expired) providing for a "proof of existence" for that C2PA Manifest and (in the case of the active manifest) its
associated asset. This time-stamp assertion is used to provide a trusted time-stamp for such C2PA Manifests.

18.17.2. Schema and Example

The schema for this type is defined by the time-stamp-map rule in the following CDDL Definition:

; The data structures used to store an array of
; manifest URNs to time-stamp "blobs"
$time-stamp-map /= {

200

http://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc8610

* $Stime-stamp-entry => bstr

}

time-stamp-entry /= tstr .regexp "Aurn:c2pa:[\\da-zA-Z_-]+s"
An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

{
"urn:c2pa:d6lc74e0-ce26-4439-b92d-690dccecb58e" : h'...',
"urn:c2pa:ab8c2751-8711-455a-9a8b-37143bfc92c2" : h'...'
}

18.17.3. Requirements

A time-stamp assertion shall have a label of c2pa.time-stamp, and there shall be at most one time-stamp
assertion per C2PA Manifest.

The time-stamp assertion consists of a CBOR map (defined as a time-stamp-map) which shall contain at least one
key-value pair (defined as a time-stamp-entry). The key shall be the C2PA Manifest URN, as defined here, for the
C2PA Manifest that is being time-stamped, and the value shall be a CBOR byte string whose contents are described in
the following paragraph.

The value for each time-stamp-entry shall be the same binary data found in the timeStampToken field of the
TimeStampResp structure received in reply from an RFC 3161-compliant Time Stamp Authority (TSA) (RFC 3161)
using detached content mode. The TimeStampResp itself shall be obtained using the same process as described in
Section 10.3.2.5.3, “Obtaining the time-stamp”, with the exception that the value of payload shall be the value of
the signature field of the COSE_Signl_Tagged structure contained in the C2PA Claim Signature box of the C2PA
Manifest that is being time-stamped.

18.18. Certificate Status

18.18.1. Description

In some provenance workflows, a standard or update manifest is created offline, where it is not possible to obtain the
revocation information (via OCSP) at the time of signing. Without that information available during the validation
process, a validator may need to go online to determine the revocation status of the certificate. This assertion is used
to provide the trusted certificate status for such C2PA Manifests, by adding the information after the fact.

18.18.2. Schema and Example

The schema for this type is defined by the cert-status-map rule in the following CDDL Definition:

certificate-status-map = {
"ocspVals": [1x bstr]
}

201

https://datatracker.ietf.org/doc/html/rfc8949
http://datatracker.ietf.org/doc/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc8610

An example in CBOR Diagnostic Format (. cbordiag) is shown below:

{
"ocspVals" : [
h'...',
MY 600"
]
}

18.18.3. Requirements

A certificate status assertion shall have a label of c2pa.certificate-status, and a C2PA Manifest shall contain

at most one certificate status assertion.

The certificate status assertion consists of a CBOR map (defined as a certificate-status-map) and shall
contain at least one entry in the ocspVa'ls array. As described in Section 14.5.2, “Certificate Revocation”, the claim
generator queries the OCSP service indicated by the signing certificate, captures the response, and shall store it the
same binary format as used when it is stored as an element of the ocspVals array of the rVals header (see
Example 3, “CDDL for rVals”).

18.19. Asset Reference

18.19.1. Description

This assertion is used to indicate one or more locations where a copy of the asset may be obtained. Such locations
shall each be described using an asset reference assertion. The location shall be expressed via a URI. The URI may be
to either a single asset or it may reference a directory. In the latter case, it serves to provide the location for a
collection of assets, that would be hashed via a collection data hash.

Expressing a uri provides flexibility to source the asset from web locations or distributed
NOTE filesystems such as IPFS (see https://docs.ipfs.tech/how-to/address-ipfs-on-web/#subdomain-
gateway for the latter).

An asset reference assertion shall have a label of c2pa.asset-ref.

The time-stamp within the assertion metadata provides a basis for determining the freshness of the link described as

the reference.

18.19.2. Schema and Example

The schema for this type is defined by the asset-ref-map rule in the following CDDL Definition:

;The asset reference assertion (ARA) describes where a copy of the asset may be obtained.
asset-ref-map = {
"references": [1*x ara-reference-block-map]

}

202

https://docs.ipfs.tech/how-to/address-ipfs-on-web/#subdomain-gateway
https://docs.ipfs.tech/how-to/address-ipfs-on-web/#subdomain-gateway
https://datatracker.ietf.org/doc/html/rfc8610

ara-reference-block-map = {
"reference": ara-reference-uri-map,
? "description": tstr, ; Human readable description of the location.

}

ara-reference-uri-map = {
"uri": tstr, ; URI reference a location where a copy of the asset may be obtained from

}

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

{
"references": [
{
"description": "A copy of the asset on the web",
"reference": {
"uri": "https://some.storage.us/foo"
}
1,
{
"description": "A copy of the asset on IPFS",
"reference": {
"uri": "dipfs://cid"
}
}
]
}

18.20. Asset Type

18.20.1. Description

The asset type assertion provides a way to more completely describe an asset, specifically additional context on how
to parse or otherwise process it. This assertion allows for specifying an IANA Media Type value and/or additional type
information, since many assets have formats that cannot be completely described by a single Media Type value.

The asset type assertion shall have a label of c2pa.asset-type.v2. There shall be at most one asset type

assertion in a C2PA Manifest.

NOTE Earlier versions of this standard documented a c2pa.asset-type assertion, which is now
deprecated.

If present, the value of the dc : format field shall be the IANA Media Type of the asset.

If present, the value of the types field shall be an array of zero or more maps (asset-type-map) specifying types
associated with the asset. The value of the type field in this map shall either come from Table 11, “Asset type values”
or use an entity-specific namespace (e.g., com. litware.types.abc), conforming to the syntax defined for
assertion labels in Section 6.2.2, “Label Naming”. If relevant, the version of the asset (e.g., the version of a dataset or

model) can be documented in the vers-ion field in the asset-type-map.

203

https://datatracker.ietf.org/doc/html/rfc8949
https://www.iana.org/assignments/media-types/media-types.xhtml

As C2PA is adopted to provide provenance for AI/ML (i.e., artificial intelligence/machine learning)

NOTE

assets in the future, the C2PA Manifest can be embedded in the model and dataset assets, and the

asset type assertion used to specify the type of these model and dataset assets.

Table 11. Asset type values
C2PA Type

c2pa.types.dataset

c2pa.types.dataset.jax
c2pa.types.dataset.keras
c2pa.types.dataset.ml_net
c2pa.types.dataset.mxnet
c2pa.types.dataset.onnx
c2pa.types.dataset.openvino
c2pa.types.dataset.pytorch
c2pa.types.dataset.tensorflow
c2pa.types.model
c2pa.types.model.jax
c2pa.types.model.keras
c2pa.types.model.ml_net
c2pa.types.model.mxnet
c2pa.types.model.onnx
c2pa.types.model.openvino.parameter
c2pa.types.model.openvino.topology
c2pa.types.model.pytorch
c2pa.types.model.tensorflow
c2pa.types.numpy
c2pa.types.protobuf
c2pa.types.pickle

c2pa.types.savedmodel

18.20.2. Schema and Example

Description of C2PA Type of the Asset

Al/ML dataset which can be processed by multiple Al/ML frameworks or is
not described by any other value

JAX dataset

Keras dataset

ML.NET dataset

MXNet dataset

ONNX dataset

OpenVINO dataset

PyTorch dataset

TensorFlow dataset

Al/ML model which is not described by any other model type
JAX model

Keras model

ML.NET model

MXNet model

ONNX model

OpenVINO model parameter

OpenVINO model topology

PyTorch model

TensorFlow model

Stored using the serialized NumPy format
Stored using the Protocol Buffer format
Stored using the Python pickle format

Stored using the TensorFlow SavedModel format

The schema for this type is defined by the asset—-types rule in the following CDDL Definition:

204

https://datatracker.ietf.org/doc/html/rfc8610

; The asset type assertion provides a way to describe the type or format of an asset,

; specifically additional context on how to parse or otherwise process it.

; It can also be used to describe externally referenced or related assets such as AI/ML
models.

$type-choice /= "c2pa.types.classifier"
$type-choice /= "c2pa.types.cluster"
$type-choice /= "c2pa.types.dataset"
$type-choice /= "c2pa.types.dataset.jax"
$type-choice /= "c2pa.types.dataset.keras"

$type-choice /= "c2pa.types.dataset.ml_net"

$type-choice /= "c2pa.types.dataset.mxnet"

$type-choice /= "c2pa.types.dataset.onnx"

$type-choice /= "c2pa.types.dataset.openvino"

$type-choice /= "c2pa.types.dataset.pytorch"

$type-choice /= "c2pa.types.dataset.tensorflow"

$type-choice /= "c2pa.types.format.numpy"

$type-choice /= "c2pa.types.format.protobuf"

$type-choice /= "c2pa.types.format.pickle"

$type-choice /= "c2pa.types.generator"

$type-choice /= "c2pa.types.generator.prompt"

$type-choice /= "c2pa.types.generator.seed"

$type-choice /= "c2pa.types.model"

$type-choice /= "c2pa.types.model.jax"

$type-choice /= "c2pa.types.model.keras"

$type-choice /= "c2pa.types.model.ml_net"

$type-choice /= "c2pa.types.model.mxnet"

$type-choice /= "c2pa.types.model.onnx"

$type-choice /= "c2pa.types.model.openvino"

$type-choice /= "c2pa.types.model.openvino.parameter"
$type-choice /= "c2pa.types.model.openvino.topology"
$type-choice /= "c2pa.types.model.pytorch"

$type-choice /= "c2pa.types.model.tensorflow"

$type-choice /= "c2pa.types.regressor"

$type-choice /= "c2pa.types.tensorflow.hubmodule"
$type-choice /= "c2pa.types.tensorflow.savedmodel"
$type-choice /= tstr .regexp "([\\da-zA-Z_-1+\\.)+[\\da-zA-Z_-]+"

asset-type-map = {
"type": $type-choice, ; one of the listed choices or a custom value
? "version": tstr .regexp "A(O|[1-9]1\\d*)\\. (0] [1-9]\\d*)\\. (O] [1-9]\\d*) (?:-((?:0]|[1-
9]\\d* |\\dx[a-zA-Z-]1[0-9a-zA-Z-]*) (?:\\. (?2:0| [1-9]\\d* | \\d*[a-zA-Z-] [0-9a-zA-Z-
1x)) %)) 2 (2:\\+([0-9a-zA-Z-]+(2:\\.[0-9a-zA-Z-]+)x)) 25"
}

asset-types = {
? "dc:format": format-string, ; IANA media type of the asset
? "types": [x asset-type-map], ; a collection of types related to the asset
? "metadata": $assertion-metadata-map ; additional information about the assertion

}

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below. In this example, the asset is a
TensorFlow model file of version 2.11.0 which is stored in the SavedModel format.

{
"types":
[

{
"type": "c2pa.types.model.tensorflow",

205

https://datatracker.ietf.org/doc/html/rfc8949

"version": "2.11.0"

Iy
{
"type": "c2pa.types.savedmodel",
"version": "2.11.0"
}
]

18.20.3. Details on selection of a value for type
If an asset’s exact type is specified in the IANA registry application type or IANA registry text type, including JSON, CSV,
and XML types, this information should be included in the asset type assertion dc: format field.

For example, if the asset is a CSV formatted text file, the dc: format field would be text/csv.

An asset type assertion may contain both a Dublin Core format and a C2PA standard or custom asset type to provide
additional information about the asset’s type. Some existing Dublin Core types that are commonly used in an asset

type assertion in combination with other asset types are specified in Table 12, “Common DC formats”.

Table 12. Common DC formats

dc:format Value Description of Dublin Core Type of the Asset
application/json Stored using the JSON format

application/gzip Stored using the GZIP format

application/vnd.rar Stored using the RAR format

application/zip Stored using the ZIP format

application/octet-stream Stored using an arbitrary binary format

text/csv Stored using the CSV format

text/plain Stored using the plain text format
text/tab-separated-values Stored using the tab-separated-values (TSV) text format
text/xml Stored using the XML format

IANA structured suffixes, such as +json and +z1ip, are also supported in the C2PA Claim’s dc: format field to
specify additional types.

Some dc:format types are commonly used but are not specified in the IANA registry. The following dc:format

values are valid for C2PA assets, as shown in Table 13, “Additional formats”.

Table 13. Additional formats

206

https://www.iana.org/assignments/media-types/media-types.xhtml#application
https://www.iana.org/assignments/media-types/media-types.xhtml#text
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml

dc:format Value Description of Dublin Core Type of the Asset
application/x-hdf5 Stored using the HDF5 format

application/x-7z-compressed Stored using the 7Z format

18.21. Depthmap

18.21.1. Description

A depthmap assertion provides a 3D description of the scene being captured by a camera. A depthmap assertion may
contain a pre-computed depth map, or data which can later be used to compute a depth map by downstream

ingestion or viewing software (e.g., left/right stereo images).

All depthmap assertions shall have a label that starts with c2pa.depthmap and be followed by a third section that
identifies the type of depth map.

C2PA depthmap assertions shall be captured optically, not inferred from a single 2D image via, for example, a

machine learning model.

18.21.2. GDepth Depthmap
A GDepth depth map assertion leverages the well-established GDepth format to encode a pre-computed depth map.
A GDepth depthmap assertion shall have a label of c2pa.depthmap.GDepth.

The schema for the data stored in this assertion shall always mirror the schema at https://developers.google.com/

depthmap-metadata/reference.

NOTE There are no concerns with splitting up the GDepth data when it grows beyond 64KB, as that limit
existed in XMP to accommodate APP1 segment size limitations.

18.21.3. Schema and Example

The schema for this type is defined by the depthmap-gdepth-map rule in the following CDDL Definition:

; Assertion that encodes a GDepth-formatted 3D depth map of the captured scene
depthmap-gdepth-map = {

"GDepth:Format": format-type, ; The format that describes how to convert the depthmap data
into a valid float-point depthmap. Current valid values are 'Rangelnverse' and 'Rangelinear'

"GDepth:Near": float, ; The near value of the depthmap in depth units

"GDepth:Far": float, ; The far value of the depthmap in depth units

"GDepth:Mime": mime-type, ; The mime type for the base64 string describing the depth
image content, e.g. 'image/jpeg' or 'dimage/png'",

"GDepth:Data": base64-string-type, ; The base64 encoded depth image. See GDepth encoding
page at developers.google.com. The depthmap will be stretched-to-fit the corresponding color
image

? "GDepth:Units": unit-type, ; The units of the depthmap, e.g. 'm' for meters or 'mm'

for millimeters

207

https://en.wikipedia.org/wiki/Depth_map
https://developers.google.com/depthmap-metadata/reference
https://developers.google.com/depthmap-metadata/reference
https://developers.google.com/depthmap-metadata/reference
https://datatracker.ietf.org/doc/html/rfc8610

? "GDepth:MeasureType'": depth-meas-type, ; The type of depth measurement. Current valid
values are 'OpticalAxis' and 'OpticRay

? "GDepth:ConfidenceMime": confidence-mime-type, ; The mime type for the base64 string
describing the confidence image content, e.g. 'image/png'.",

? "GDepth:Confidence": base64-string-type, ; The base64 encoded confidence image. See
GDepth encoding page at developers.google.com. The confidence map should have the same size
as the depthmap

? "GDepth:Manufacturer": tstr .size (1..max-tstr-length), ; The manufacturer of the
device that created this depthmap

? "GDepth:Model": tstr .size (1..max-tstr-length), ; The model of the device that created
this depthmap

? "GDepth:Software": tstr .size (1..max-tstr-length), ; The software that created this
depthmap

? "GDepth:ImageWidth": float, ; The width in pixels of the original color image associated
to this depthmap. This is NOT the depthmap width. If present, apps must update this property
when scaling, cropping or rotating the color 1image. Clients use this property to verify the
integrity of the depthmap w.r.t. the color image

? "GDepth:ImageHeight": float, ; The height in pixels of the original color image
associated to this depthmap. This 1is NOT the depthmap height. If present, apps must update
this property when scaling, cropping or rotating the color image. Clients use this property
to verify the dintegrity of the depthmap w.r.t. the color image

? "metadata": $assertion-metadata-map, ; additional information about the assertion

}
base64-string-type = tstr

$mime-choice /= "dimage/jpeg"
$mime-choice /= "image/png"

mime-type = $mime-choice .default "image/jpeg"
confidence-mime-type = $mime-choice .default "image/png"

$format-choice /= "RangeInverse"
$format-choice /= "RangelLinear"

format-type = $format-choice .default "RangeInverse"

; Unit can be meter represented as "m" or could be millimeter represented as "mm"
Sunit-choice /= "m"

Sunit-choice /= "mm"

unit-type = $unit-choice .default "m"

$depth-meas-choice /= "OpticalAxis"
$depth-meas-choice /= "OpticRay"
depth-meas-type = $depth-meas-choice .default "OpticalAxis"

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

"GDepth:Far": 878.7,

"GDepth:Data": "hoOspQQllFTy/4Tp8Epx670E5QW5NWkNR+2b30KFXug="",
"GDepth:Mime": "image/jpeg",

"GDepth:Near": 29.3,

"GDepth:Model": "CameraCompany Shooter S1",

"GDepth:Units": "mm",

"GDepth:Format": "RangeInverse",

"GDepth:Software": "Truepic Foresight Firmware for QC QRD8250 v0.01",
"GDepth:Confidence": "acdbpQQllFTy/4Tp8Epx670E5QW5NWkNR+2b30KFXug="",
"GDepth:ImageWidth": 32.2,

"GDepth:ImageHeight": 43.6

208

https://datatracker.ietf.org/doc/html/rfc8949

"GDepth:MeasureType": "OpticalAxis",
"GDepth:Manufacturer": "CameraCompany",
"GDepth:ConfidenceMime": "image/png",

}

As defined by the GDepth specification, the following fields shall be present in all GDepth depth map assertions:

+ GDepth:Format;
» GDepth:Near;

+ GDepth:Far;

+ GDepth:Mime;

« GDepth:Data.

18.22. Font Information

18.22.1. Description

A Font Information assertion is used to ensure that basic font metadata, such as the name, format, creator attribution,

and licensing, are added to the asset in a manner which may be validated cryptographically.

A Font Information assertion shall have a label of font.info, and there shall be at most one Font Information

assertion per manifest.

18.22.2. Schema and Example

The schema for this type is defined by the font-1info-map rule in the following CDDL Definition:

; Assertion data for font.info assertion.
font-info-map = {

"fullName": tstr, ; The full name of the font.

; A version 1in the semantic versioning (semver) format.

? "version": tstr .regexp "M(O|[1-91\\d*)\\. (O] [1-91\\d*)\\. (O] [1-9]\\d*) (?:-((?:0]|[1-
9]\\d* |\\d*[a-zA-Z-][0-9a-zA-Z-]*) (?:\\.(?:0| [1-9]\\d* |\\d*[a-zA-Z-][0-9a-zA-Z-
1x)) %)) 2 (2:\\+([0-92-zA-Z-]+(?:\\.[0-9a-zA-Z-]+)*)) ?s",

? "versionUrl": ext-url-type, ; A URL to the release notes associated with this version of
the font.

? "releaseDate": tdate, ; The date this version of the font was released or published.

"familyName": tstr, ; The Font Family.

"style": $font-style, ; The style of the font, e.g. italic or regular.

"weight": font-weight-map, ; The weight of the font with name and value.

; The PostScript name, ID 6, from the font 'name' table.

"postScriptName": tstr .regexp "A(2!.A[\\NI\NINN VDN /%T) [-~1{1,63}$", ;
Characters from ASCII 33-126 except the following: [](){}<>/%

"format": S$font-format-choice, ; The format of this font.

"copyrightNotice": tstr, ; The copyright associated with this font.

? "copyrightHolder": font-entity-map, ; The entity that holds the copyright to the font.

? "copyrightYears": [1x font-copyright-year-range], ; The years for which the holder
asserts copyright.
? "designers": [1x font-designer-map], ; The individuals that designed the font.
? "designFoundry": font-entity-map, ; The foundry that designed the font.

209

https://datatracker.ietf.org/doc/html/rfc8610

? "sourceFoundry": font-entity-map,
? "didentifier": tstr,

; Font Formats
$font-format-choice /= "TrueType"
$font-format-choice /= "OpenType"

; The foundry that distributes the font.

; Internal didentier of font for foundry or vendor use.

; Copyright year range
font-copyright-year-range =

; Font weight range
font-weight-range =

iLo

1..9999

.1000

; Font weight class descriptors

$font-weight-class /= "Microline"
$font-weight-class /= "Hairline"
$font-weight-class /= "UltraThin"
$font-weight-class /= "ExtraThin"
$font-weight-class /= "Thin"
$font-weight-class /= "UltraLight"
$font-weight-class /= "ExtralLight"
$font-weight-class /= "Light"
$font-weight-class /= "SemilLight"
$font-weight-class /= "Book"
$font-weight-class /= "Normal"
$font-weight-class /= "Regular"
$font-weight-class /= "Medium"
$font-weight-class /= "DemiBold"
$font-weight-class /= "SemiBold"
$font-weight-class /= "Bold"
$font-weight-class /= "Heavy"
$font-weight-class /= "ExtraBold"
$font-weight-class /= "UltraBold"
$font-weight-class /= "SemiBlack"
$font-weight-class /= "Black"
$font-weight-class /= "ExtraBlack"
$font-weight-class /= "UltraBlack"
$font-weight-class /= "MegaBlack"
; The font style

$font-style /= "Normal"
$font-style /= "Italic"
$font-style /= "Oblique"
$font-style /= "Roman"

$font-style /= "Regular"

; Data for a font weight
font-weight-map = {

"class": $font-weight-class,
thin.

"value": font-weight-range,

}

; The descriptive name of the weight class, e.g. bold or

; The value of the weight.

; Data for an entity with a name and credentials
font-entity-map = {
"name": tstr, ; The name of the person or foundry.
? "url": ext-url-type, ; A URL for additional information about this person or foundry.

}

; Data for a font designer
font-designer-map = {

"person": font-entity-map, ; The person who designed the font.

210

? "foundry": font-entity-map, ; The name of the foundry with which the designer was
associated when contributing to the font design.

? "contribution": tstr, ; A description of what the designer contributed to the font. For
example, 'All the Latin and Arabic characters'.

? "startDate": tdate, ; "When the designer started to contribute to the font desdign.

? "endDate": tdate, ; When the designer ended contributions to the font design.

}

A basic example in CBOR diagnostic notation (RFC 8949, clause 8), containing only required fields, is shown below:

{
"fullName": "Example Two Italic",
"familyName": "ExampleTwo",
"style": "Italic",
"weight'": {
"class": "Regular",

"value": 400
i
"postScriptName": "Example-Two-Italic",
"format": "TrueType",
"copyrightNotice": "Copyright 2011 The Example Two Project Authors
(https://www.example.com/lifonts/Example-Two), with Reserved Font Name 'Example Two'.",
"copyrightHolder": {

"name": "Fabrikam"
i
"designers": [
{
"person": {
"name": "John Doe",
"url": "https://fabrikam.example.com/jdoefonts"
}
}
]

This extended example demonstrates optional fields as well:

"fullName": "Example Font Bold Italic",
"version": "7.0.4-beta",
"versionUrl": "https://fabrikam.example.com/release/efbi/7.0",
"familyName'": "ExampleFont",
"style": "Italic",
"weight": {
"class": "Bold",
"value'": 700
1,
"postScriptName": "ExampleFont-BoldItalic",
"format": "OpenType",
"copyrightNotice": "© 2017 Fabrikam, Inc. All Rights Reserved.",
"copyrightHolder": {

"name": "Fabrikam Inc."
1,
"copyrightYears": [

1982,

2017
1,

"designers": [

211

https://datatracker.ietf.org/doc/html/rfc8949

212

"person": {

"name": "John Doe",
"url": "https://fabrikam.example.com/browse/designers/john-doe"
1,
"foundry": {
"name": "Fabrikam Fonts"
1,
"contribution": "Ligatures."
1,
{
"person": {
"name": "Jane Doe"
1,
"foundry": {
"name'": "Fabrikam Fonts"
1,
"contribution": "All characters."
}
1,
"designFoundry": {
"name": "Fabrikam Fonts",
"url": "https://fabrikam.example.com"
1,
"sourceFoundry": {
"name": "Fonts Direct 2 U",
"url": "https://fd2u.example.com"
1,
"jdentifier": "ExampleFont Bold Italic (Fabrikam)"

Chapter 19. Patent Policy

The C2PA has adopted an open standard patent policy via W3C’s Patent Mode (2004):

Licensing Commitment. For materials other than source code or datasets developed by the Working Group, each
Working Group Participant agrees to make available any of its Essential Claims, as defined in the W3C Patent Policy
(available at http://www.w3.org/Consortium/Patent-Policy-20040205), under the W3C RF licensing requirements
Section 5 (http://www.w3.org/Consortium/Patent-Policy-20040205), in Approved Deliverables adopted by that
Working Group as if that Approved Deliverable was a W3C Recommendation. Source code developed by the Working
Group is subject to the license set forth in the Working Group charter.

For Exclusion. Prior to the adoption of a Draft Deliverable as an Approved Deliverable, a Working Group Participant
may exclude Essential Claims from its licensing commitments under this agreement by providing written notice of
that intent to the Working Group chair (“Exclusion Notice”). The Exclusion Notice for issued patents and published
applications must include the patent number(s) or title and application number(s), as the case may be, for each of the
issued patent(s) or pending patent application(s) that the Working Group Participant wishes to exclude from the
licensing commitment set forth in Section 1 of this patent policy. If an issued patent or pending patent application
that may contain Essential Claims is not set forth in the Exclusion Notice, those Essential Claims shall continue to be
subject to the licensing commitments under this agreement. The Exclusion Notice for unpublished patent
applications must provide either: (i) the text of the filed application; or (ii) identification of the specific part(s) of the
Draft Deliverable whose implementation makes the excluded claim an Essential Claim. If (ii) is chosen, the effect of
the exclusion will be limited to the identified part(s) of the Draft Deliverable. The Working Group Chair will publish
Exclusion Notices.

213

http://www.w3.org/Consortium/Patent-Policy-20040205
http://www.w3.org/Consortium/Patent-Policy-20040205

Appendix A: Embedding manifests

A.1. Supported Formats

A C2PA Manifest is embedded into an asset as part of the C2PA Manifest Store for that asset.

When embedding the C2PA Manifest Store into an asset, the location will vary based on the type or format of the

asset. Here are some well-known file formats and the location for the C2PA Manifest Store in each:

JPEG

Refer to Section A.3.1, “Embedding manifests into JPEG” for more information.

JPEG-XL

Refer to Section A.3.8, “Embedding manifests into JPEG XL” for more information.

PNG

Refer to Section A.3.2, “Embedding manifests into PNG” for more information.

SVG

Refer to Section A.3.3, “Embedding manifests into SVG” for more information.

FLAC

Refer to Section A.3.4, “Embedding manifests into ID3” for more information.

MP3

Refer to Section A.3.4, “Embedding manifests into ID3” for more information.

GIF

Refer to Section A.3.7, “Embedding manifests into GIFs” for more information.

DNG

Refer to Section A.3.5, “Embedding manifests into TIFF-based assets” for more information.

TIFF-based formats

Refer to Section A.3.5, “Embedding manifests into TIFF-based assets” for more information.

WAV and BWF

Refer to Section A.3.6, “Embedding manifests into RIFF-based assets” for more information.

AVI

Refer to Section A.3.6, “Embedding manifests into RIFF-based assets” for more information.

214

WebP

Refer to Section A.3.6, “Embedding manifests into RIFF-based assets” for more information.

Other RIFF-based formats

Refer to Section A.3.6, “Embedding manifests into RIFF-based assets” for more information.

Fonts

Refer to Section A.3.9, “Embedding manifests into fonts” for more information.

PDF

Refer to Section A.4, “Embedding manifests into PDFs” for more information.

EPUB

Refer to Section A.6, “Embedding manifests into ZIP-based formats” for more information.

OOXML

Refer to Section A.6, “Embedding manifests into ZIP-based formats” for more information.

Open Document

Refer to Section A.6, “Embedding manifests into ZIP-based formats” for more information.

OpenXPS

Refer to Section A.6, “Embedding manifests into ZIP-based formats” for more information.

Other ZIP-based formats

Refer to Section A.6, “Embedding manifests into ZIP-based formats” for more information.

MP4

Refer to Section A.5, “Embedding manifests into BMFF-based assets” for more information.

MoV

Refer to Section A.5, “Embedding manifests into BMFF-based assets” for more information.

AAC

Refer to Section A.5, “Embedding manifests into BMFF-based assets” for more information.

ALAC

Refer to Section A.5, “Embedding manifests into BMFF-based assets” for more information.

HEIF

Refer to Section A.5, “Embedding manifests into BMFF-based assets” for more information.

Other BMFF-based formats

The box specified in Section A.5, “Embedding manifests into BMFF-based assets”.

215

NOTE Non-BMFF-based audio formats which are being considered for addition to this specification include
Ogg Vorbis and the native container version of the Free Lossless Audio Codec (Native FLAC).

A.2. Embedding manifests in multi-part assets

When embedding a C2PA Manifest into a multi-part asset ("multi-asset"), there shall be a C2PA Manifest Store
embedded into the primary part of the asset (which contains the active manifest), though additional parts may also
contain their own C2PA Manifest Stores. The active manifest of the primary part shall contain a multi-asset hash
assertion that describes the location and hash of each part within the asset and should describe the provenance of
the whole multi-part asset.

A.3. Embedding manifests into non-BMFF-based assets

A.3.1. Embedding manifests into JPEG

The C2PA Manifest Store shall be embedded as the data contained in an APP11 marker segment as defined in JPEG
XT, 1SO/IEC 18477-3.

Since a single marker segment in JPEG 1 cannot be larger than 64K bytes, it is likely that multiple APP11 segments will
be required, and they shall be constructed as per the JPEG 1 standard and ISO 19566-5:2023, D.2. When writing
multiple segments, they shall be written in sequential order, and they shall be contiguous (i.e., one segment
immediately following the next).

A.3.2. Embedding manifests into PNG

The C2PA Manifest Store shall be embedded using an ancillary, private, not safe to copy, chunk type of 'caBX"' (as
per PNG, 4.7.2). It is recommended that the ' caBX' chunk precede the ' IDAT' chunks.

Although PNG supports it, it’s considered bad-form to have a data block after the 'IDAT' and
before the 'IEND'. (The exception being animated PNG blocks)

NOTE

A.3.3. Embedding manifests into SVG

SVG is an XML-based format that can exist either stand-alone or embedded into other text-based formats such as
HTML. As such, it is necessary to Base64 encode the binary C2PA Manifest Store to perform the embedding. While this
section describes how to do that, the use of an external manifest is preferred.

The C2PA Manifest Store shall be embedded as the Base64-encoded value of a c2pa:manifest element in the
metadata element of the SVG. Because XML, and SVG in particular, strongly recommend the declaration of a
namespace prior to its use, a xmlns:c2pa = "http://c2pa.org/manifest" attribute declaration should be
added to the svg element.

216

https://www.iso.org/standard/66071.html
https://www.iso.org/standard/66071.html
https://www.w3.org/TR/2003/REC-PNG-20031110/
https://www.w3.org/TR/SVG11/
https://www.w3.org/TR/SVG11/metadata.html#MetadataElement
https://www.w3.org/TR/SVG11/metadata.html#MetadataElement

Example 17. Example of a C2PA Manifest Store in an SVG

An example of a C2PA Manifest Store in an SVG (with the actual C2PA Manifest’s data left out).

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="31in" version="1.1"
xmlns = "http://www.w3.0rg/2000/svg"
xmlns:c2pa = "http://c2pa.org/manifest">
<metadata>
<c2pa:manifest>...Base64 data goes here...</c2pa:manifest>
</metadata>
</svg>

A.3.4. Embedding manifests into ID3

The C2PA Manifest Store shall be embedded into a ID3v2-compatible, compressed audio file (e.g., MP3 or FLAC) file as
the Encapsulated object data of a General Encapsulated Object (GEOB) as defined in https://id3.org/id3v2.3.0. The
GEOB’s MIME type field shall be present and shall use the value for the media type for JUMBF as described in
Section 11.4, “External Manifests”.

A.3.5. Embedding manifests into TIFF-based assets

The Digital Negative or DNG format provides camera manufacturers to provide their camera raw formats in a
standardized manner. DNG is based on which is based on TIFF/EP (which is, itself, based on TIFF).

The C2PA Manifest Store shall be embedded into a TIFF-compatible file (i.e., TIFF/EP, DNG or other TIFF-based RAW
formats) as the data of a tag with ID 52545 (decimal) or 0xCD41 (hexadecimal), with a tag type of 7.

Although TIFF supports the concept of multiple pages or layers (via multiple IFD’s), there shall only be one C2PA
Manifest Store for the entire asset - not one per IFD. As such, the C2PA Manifest Store shall be the only box present in
the last IFD, the IFD immediately preceding the end of the file.

Previous versions of this specification required the use of IFD 0, but it was recognized that doing so
restricted its use in TIFF-based RAW formats.

NOTE

A.3.6. Embedding manifests into RIFF-based assets

The RIFF (Resource Interchange File Format) format provides a generic container format for storing data in tagged
chunks. It is primarily used to store multimedia such as images, sound and video. It serves as the container format for
WAV, BWF, Broadcast Wave, AVI and WebP.

NOTE RIFF is based on an older format called IFF.

The C2PA Manifest Store shall be embedded into a RIFF-compatible file (i.e., WAV, AVl or WebP) as the data of a chunk
with an identifier of C2PA. For compatibility reasons, this C2PA chunk shall appear at the end of the RIFF chunk.

217

https://id3.org/id3v2.3.0#General_encapsulated_object
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_spec_1_6_0_0.pdf
https://www.iso.org/standard/29377.html
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://en.wikipedia.org/wiki/WAV
https://en.wikipedia.org/wiki/Broadcast_Wave_Format
https://en.wikipedia.org/wiki/Audio_Video_Interleave
https://en.wikipedia.org/wiki/WebP
https://en.wikipedia.org/wiki/Interchange_File_Format

A.3.7. Embedding manifests into GIFs

The C2PA Manifest Store shall be broken into chunks of a size no greater than 255 bytes and embedded into
contiguous data sub-blocks (as per GIF, 15) within a C2PA-specialised Application Extension block (as per GIF, 26),
specified below.

In this C2PA Application Extension Block, the Application Authentication Code is not used to
NOTE authenticate the application producing the block. Instead, it is used as a block version, and set
initially at major version 1, minor version 0, and is encoded as specified below.

Extension Introducer: 0x21

Application Extension Label: OxFF

Block Size: 0xB

Application Identifier: 0x43, 0x32, 0x50, 0x41, OX5F, Ox47, 0x49, 0x46 (“C2PA_GIF”)
Application Authentication Code: 0x010000 (Ox[MajorVersion][MinorVersion]00)
Application Data: The C2PA Manifest Store, encoded as a series of data sub-blocks, each
containing 1 byte size followed by up to 255 bytes of data

Block Terminator: 0x00 (added after the last data sub-block of the C2PA Manifest Store)
Quantity: One

This block shall be embedded after the header and prior to the first image descriptor box.

A.3.8. Embedding manifests into JPEG XL

As described in ISO/IEC 18181-2:2024, Clause 4, JPEG XL supports two different formats for the data. It may use a box
structure that is compatible with JPEG 2000 and JPEG XS or it may be a direct JPEG XL codestream without the box
structure. A JPEG XL file that uses the box structure shall contain at most one JUMBF (jumb) superbox (ISO/IEC 18181-
2:2024, Clause 9.3) containing a C2PA Manifest JUMBF Box, which contains the C2PA Manifest as described in Section
11.1.4.2, “Manifest Store”. A JPEG XL file that is only a codestream is unable to include an embedded C2PA Manifest.

218

https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/Graphics/GIF/spec-gif89a.txt

JPEG XL Image

‘Jumb’ box w/Manifest Store (c2pa’)

C2PA Manifest (‘'c2Zma’)

Claim Signature (c2cs’)

Claim ("c2¢l’)

Assertion Store [c2as’)

Figure 19. A C2PA Manifest embedded in a JPEG XL image

A.3.9. Embedding manifests into fonts

Fonts which conform to either Open Font Format or the OpenType specification may include a C2PA table. When
present, this table may include an embedded manifest, a remote manifest URI, or both.

The C2PA table format is not yet defined in the Open Font Format nor OpenType specification; the following
definition is preliminary:

A.3.9.1. Table Tag

The C2PA table record will be identified by the following table tag: C2PA.

A.3.9.2. Table Record

The C2PA table provides full support for a Manifest Stores to be either embedded or remote or both. The table record
is defined as follows:

Table 14. C2PA table record

Type Name Description

219

https://www.iso.org/standard/74461.html
https://learn.microsoft.com/en-us/typography/opentype/spec/
https://www.iso.org/standard/74461.html
https://learn.microsoft.com/en-us/typography/opentype/spec/

uintlé majorvVersion Specifies the major version of the C2PA font

table.

uintle minorvVersion Specifies the minor version of the C2PA font
table.

Offset32 activeManifestUriOffset Offset from the beginning of the C2PA font table

to the section containing a URI to the active
manifest. If a URI is not provided a NULL offset =
0x0000 should be used.

uintl6 activeManifestUrilLength Length of URI in bytes.
uintlé reserved Reserved for future use.
Offset32 manifestStoreOffset Offset from the beginning of the C2PA font table

to the section containing a C2PA Manifest Store.
If a Manifest Store is not provided a NULL offset
=0x0000 should be used.

uint32 manifestStoreLength Length of the C2PA Manifest Store data in bytes.

The non-embedded C2PA manifest may be remote or locally on the same storage system. If the reference is a JUMBF
URI, it should be a valid reference within the C2PA Manifest Store.

A.4. Embedding manifests into PDFs

A.4.1. General

All C2PA Manifest Stores shall be embedded using embedded file streams (ISO 32000, 7.11.4). The embedded file
specification dictionary shall have a Subtype key whose value is application/c2paand an AFRelationshiip
key (ISO 32000, 7.11.3) whose value is C2PA_Man-ifest. If a C2PA Manifest Store is embedded into an encrypted
PDF, the embedded file stream shall use an Identity crypt filter.

A.4.2. Document-level Manifests

A.4.2.1. Adding the Manifest to a PDF

When adding a C2PA Manifest to the entire PDF, the document catalog dictionary shall contain an AF entry whose
value is an indirect reference to the embedded file specification containing the active manifest. That embedded file
specification shall also be referenced, via indirect object, either from the EmbeddedFiles NameTree
(/Catalog/Names/EmbeddedFiles) or from a FileAttachment annotation. The annotation approach shall
be used when adding a C2PA Manifest Store to a PDF that already has an existing PDF certifying signature in order to
avoid invalidating its DocMDP restrictions.

NOTE Values of I or 2 of the P field in the DocMDP dictionary do not allow this type of modification. Only a
value of 3 does.

220

In most other formats, there only exists a single C2PA Manifest Store that contains all of the C2PA Manifests for the
asset. However, because of PDF’s "incremental update" feature, it is necessary to instead support multiple manifests
in a single PDF. In this scenario, the C2PA Manifest Store found in the base PDF shall be considered the initial manifest
and the one in the most recent update, the active manifest. A C2PA Manifest Consumer shall process all C2PA
Manifests in all C2PA Manifest Stores as if they were contained in a single C2PA Manifest Store.

Because a JUMBF URI is always a full URI, meaning that it starts at a given C2PA Manifest, and all
NOTE C2PA Manifests are considered to be contained in a single C2PA Manifest Store, using such a URI to
referto a parentOf ingredient across C2PA Manifest Stores in a PDF is acceptable.

A.4.2.2. Compatibility with PDF Signatures

It is necessary to know, when adding a new C2PA Manifest Store, if a PDF signature (certifying or approval) will also be
applied. Since the PDF signature will change the data of the PDF after the C2PA Manifest is signed, the size and
location of the PDF signature dictionary’s Contents key shall be determined before C2PA signing. That range of
bytes shall be added to the list of exclusions in the c2pa.hash.data assertion, so that the C2PA signature is not
invalidated by the addition of the PDF signature. The PDF signature shall be over the entire PDF, including the
associated C2PA Manifest Store.

NOTE Adding the PDF signature in addition to the C2PA’s claim signature improves compatibility with the
existing PDF ecosystem.

A.4.3. Object-level Manifests

In addition to being able to provide provenance for the PDF itself, via document-level manifests, individual objects
within a document may also have an associated C2PA Manifest Store. This is done by adding an AF entry to the
object’s stream or dictionary. The value of the AF entry shall be an indirect reference to the embedded file
specification containing the C2PA Manifest Store, embedded as described above.

The most common uses for this feature are to provide provenance for embedded images - either as Image or Form
XObjects and Fonts. It can also be used to provide provenance for specific pieces of content by adding the AF entry to
the object (via property list) or a structure element, as described in the Associated Files clause of ISO 32000-2
(14.13.1).

It is recommended that any object-level manifest that is added be referenced from the active manifest as a
componentOf ingredient. This will allow the C2PA Manifest Consumer to easily traverse the entire chain of
provenance for the asset.

In general, any PDF stream or dictionary may have a C2PA Manifest attached to it as long as the stream or dictionary
represents an actual information resource. When there is ambiguity about exactly which stream or dictionary may
bear the AF entry, the manifest shall be attached as closely as possible to the object that actually stores the data
resource described.

The C2PA Manifest describing a raster image would be attached to the Image XObject stream

NOTE describing it, and the manifest for embedded font files would be attached to font file streams rather

221

than to font dictionaries.

A.4.4. Example

A.5. Embedding manifests into BMFF-based assets

Document Catalog Dictionary

Embedded Files

Active Manifest

Page 1

Assertions

Content Stream

l

Claim

Claim Signature

Resources

Ingredient Manifest (Image)

Image XObject

Assertions

Claim

Font

Claim Signature

Ingredient Manifest (Font)

Assertions

Claim

Claim Signature

Text is not SVG - cannot display

A.5.1. The "uuid' Box for C2PA

All BMFF-based C2PA assets, whether they are timed (e.g., videos with or without audio tracks), untimed (e.g., still

photos) or mixed (e.g., live or animated photos) audiovisual media, shall use a 'uuid' box that adheres to the

following syntax and semantics defined below.

The reason that a 'uuid' box instead of a 'c2pa' box is being used is that browsers based on

NOTE

Chromium will immediately fail playback when they encounter any unknown top-level boxes.
Some file formats that are BMFF-based and would be supported via this method include:

« MPEG-4 code-points, either complete (. mp4) or fragmented (. m4s); downloadable audio files (. m4a);

o HEIF (. heif, .heic);

« AVIF (. avif).

A.5.1.1. Definition

Box Type: 'uuid'

222

Figure 20. Example of a PDF with multiple ingredient manifests

Extended Box Type: 0xD8, OxFE, 0xC3, 0xD6, Ox1B, OxOE, 0x48, 0x3C, 0x92, 0x97, 0x58, 0x28,
Ox87, OXxTE, OxC4, 0Ox81

Container: File

Mandatory: No

Quantity: Zero or more

C2PA’s 'uuid' box embeds provenance into BMFF. One such box contains a C2PA Manifest Store, and there may be

one or more auxiliary boxes containing additional information required for validation.
A.5.1.2. Syntax

aligned(8) class ContentProvenanceBox extends FullBox('uuid', extended_type = 0xD8 OxFE 0xC3
OxD6 Ox1B OXOE 0x48 Ox3C 0x92 0x97 Ox58 Ox28 0x87 OxXT7E OxC4 0x81, version = 0, 0) {

string box_purpose;

bit(8) datall;

A.5.1.3. Regarding unique IDs

There are cases, such as fragmented MP4 (fMP4), where the ID for a subset of the asset, such as the track_id field of

the 'tkhd' box, is only locally unique to a subset of the overall asset rather than globally unique to the asset.

Because a globally unique ID is needed to determine what to hash, a unique ID is included. This unique ID does not
equal any value from the original asset; each value is instead defined when the manifest is created. The unique ID is
then combined with an associated local ID to form an ID that’s globally unique to the entire asset.

A.5.2. Semantics

The purpose of each box (box_purpose) and the fields that depend on it (data) are described below for each box.

A.5.3. Box Containing the Manifest

The box containing the C2PA Manifest Store shall appear before the first "'mdat' box in the file and before any
"moov ' boxin the file. To accommodate major_brand and compatible_brand verification, it shall be placed after the
"ftyp' box. When the active manifest of an asset is an update manifest, the previous standard C2PA Manifest Store
is located as indicated above with box_purpose changed to original. The updated C2PA Manifest Store shall

exist as the last box of the file with box_purpose settoupdate.
The fields in the corresponding box described above shall be set as follows.

box_purpose

For a C2PA Manifest Store, this value shall be manifest,original orupdate.

data

When box_purpose is manifest, the first 8 bytes inside 'data' shall be the absolute file byte offset to the first
auxiliary "uuid' C2PA box with box_purpose equal to merkle. If this file contains no such boxes, those 8 bytes

223

shall be zero. Those 8 bytes shall be followed by the raw C2PA Manifest Store bytes followed by zero or more
unused padding bytes. When box_purpose is original, that indicates another C2PA box whose
box_purpose value is set to update is present. The "data' within this original box is unchanged. When
box_purposeisupdate, the C2PA Manifest Store shall only contain update manifests.

The 'data' field inside the 'uuid' box of type manifest ororiginalincludes the absolute file
NOTE byte offset, manifest, and padding bytes. The original and manifest boxes are identical apart from
value of box_purpose and as such hash bindings are not changed. No data hashed data is moved by

appending 'update' box.

Padding bytes are not permitted outside the "uuid' box unless they are contained in their own mp4 box such as a
"free' box.

For fragmented MP4 (fMP4) files, an identical 'uuid' C2PA box of type manifest shall be present in each
initialization segment; the C2PA Manifest Store shall be identical.

A.5.4. Auxiliary 'c2pa' Boxes for Large and Fragmented Files

A.5.4.1. General

Some files have one or more very large 'mdat' boxes (e.g., large video or image files which may be downloaded and
rendered progressively) or large numbers of independent 'mdat' boxes (e.g., fMP4 where each fragment can be
downloaded independently).

In these cases, it is unreasonable to require a client to completely download all "'mdat' box(es) before validating any
portion of the asset. Avoiding that necessity is resolved by using multiple hashes.

For each large "mdat' box, subsets of the box have individual hashes that can be validated independently; how to
determine these subsets is specified below. For fMP4 content where each 'mdat' box can be downloaded
independently, each fragment has its own individual hash.

In the simplest case, all of these hashes are stored in the active manifest. Each subset has an auxiliary "uuid' C2PA
box that declares how to locate its hash in the active manifest; refer to the note regarding unique IDs above for why
thisis the case.

However, for sufficiently large assets, including every subset’s hash in the manifest itself would increase the size of
the C2PA Manifest Store to one or more megabytes.

Avoiding such a large C2PA Manifest Store for a large asset is achieved by using one or more Merkle trees.

« For a large non-fragmented asset that contains one or more "mdat' boxes in a single large file, one Merkle tree is
used foreach 'mdat"' box.

« For a large fragmented asset that contains a set of "'mdat' boxes for a single track which may be spread across
multiple files, one Merkle tree is used for each track.

224

In either case:

+ Each leaf node of any given Merkle tree is the subset’s hash.
« The manifest stores one row of each Merkle tree.

« The auxiliary "uuid' C2PA box that exists for each subset indicates which Merkle tree row in the active manifest
it requires and which leaf node it represents. It also includes any additional hash(es) from the Merkle tree
necessary to derive a hash in the active manifest’s Merkle tree row.

The selection of which Merkle tree row to store in the manifest creates a size tradeoff within the asset. Specifically,
storing a single hash per Merkle tree in the manifest minimizes the size of the manifest but requires log2(subsets) to
be stored in each subset-specific box. Each time the number of hashes stored in the manifest for a Merkle tree is
doubled (by moving "down" one Merkle tree row), the number of hashes stored in each subset-specific box decreases
by one. Thus, increasing the size of the manifest decreases the size of the entire asset and vice-versa, and since hashes
forindividual subsets are replicated across subsets as required to derive a manifest-specified hash, the tradeoff is not
l1tol.

Making this size tradeoff is left up to the implementation creating the manifest; this spec neither mandates nor
recommends that any specific Merkle tree row be stored in the manifest. That said, because the simplest case of
storing all subset hashes in the manifest is equivalent to using a Merkle tree where the leaf nodes are stored in the
manifest, the same Merkle tree construction is used for multiple hashes in all cases. That construction is defined as
follows.

The portion of the manifest containing the BMFF Hash shall include the merkle field. Refer to Section 9.2.3, “Hashing
a BMFF-formatted asset” for more information.

A.5.4.1.1. Non-fragmented asset that can be validated piecewise

If the manifest contains a non-leaf row of the merkle tree, two or more auxiliary 'uuid' C2PA boxes with
box_purpose set to 'merkle' as described below shall be included in the file. They are not required to be
included in the file if the manifest contains the leaf row of the merkle tree. If they exists, they shall follow the last
"'mdat' boxin thefile.

The hash used for a given leaf node in the merkle tree shall be computed from the subset of payload of the 'mdat’.
The 'mdat"' is divided into sizes defined by ' fixedBlockSize' orthearray of 'variableBlockSizes' found
in the bmff-merkle-map, and sum of the 'variableBlockSizes"' shall be equal to size of the 'mdat'
payload.

All such auxiliary "uuid' C2PA boxes shall meet the following requirements.

» They shall be in the same sequence as the subsets they hash as specified by the 'variableBlockSizes'
field.

« They shall be grouped such that a single merkle tree’s auxiliary "uuid' C2PA boxes are sequential with no
intervening boxes.

« The location value in the first box shall be set to 0, in the second box shall be set to 1, and shall increase

225

sequentially thereafter.

A.5.4.1.2. Fragmented asset

For fMP4 assets which are split across multiple files:
+ One auxiliary "uuid' C2PA box with box_purpose set to "merkle' as described below shall be included in
each fragment file immediately preceding the "moof' box.
« The hash used for a given leaf node in the Merkle tree shall be over all data in its containing single fragment file

except data excluded by the exclusion list.

This specification does not enable support for fMP4 assets which are split across multiple files where
individual fragment files contain more than one 'moof' boxor 'mdat"' box or both.

NOTE

For fMP4 assets which are stored as a single flat MP4 file with a single "moov ' for all tracks and then one 'moof'
/'mdat' pair for each fragment:

« One auxiliary "uuid' C2PA box with box_purpose set to "'merkle' as described below shall be included
immediately preceding each 'moof' box.

« The hash used for a given leaf node in the Merkle tree shall be over that 'moof' box plus all data preceding the
next 'moof' box or over all data through the end of the file if there is no further "moof' box. The hash shall not
cover data excluded by the exclusion list.

Taking a C2PA-compliant fMP4 asset which is split across multiple files (i.e., has 'c2pa’
boxes of types 'manifest' and 'merkle')and appending the individual files together will
not produce a single file which is C2PA-compliant (nor vice-versa). This is because which

IMPORTANT boxes are included in each "merkle' hash will be different in the two cases. If both forms are
desirable, the second form shall consider the first form as an ingredient and the new manifest
shall include both an ingredient assertion with relationship parentOf and an actions
assertion that includes an action of type c2pa. repackaged.

A.5.4.1.3. Box containing the merkle auxiliary
Regardless of how the asset is structured, the fields in the corresponding box described above shall be set as follows.

box_purpose

For an auxiliary 'uuid' C2PA box, this value shall be merkle.

data

When box_purpose is merkle, this value shall contain raw CBOR bytes indicating how to validate a portion of
the asset as defined as follows. If there are multiple auxiliary 'uuid' C2PA boxes with box_purpose merkle
for a given Merkle tree in a single file, each shall be followed by sufficient padding bytes (zero or more) to make all
auxiliary "uuid' C2PA boxes for that Merkle tree a fixed size.

NOTE When there are more than one of these boxes in a single file, i.e., the case where there are large

226

"'mdat’'(s) being validated piecemeal, a fixed size is needed in order to enable a progressively
downloading client to only download the boxes it needs to begin validation rather than the entire
Merkle tree. Such a client can download enough of the first of these boxes based on the absolute file
byte offset in the active manifest to determine if its uniqueld and localld match the 'mdat' it is
trying to validate. If they do, it can determine the absolute file byte offset to the box it needs to
validate by multiplying the subset number by that size then download just that box. Otherwise, it can
determine the absolute file byte offset to the beginning of the next Merkle tree by multiplying that
fixed size by the current Merkle tree’s total number of leaf nodes, and it can repeat this process until
it locates the box it needs. The total download size for this subset of boxes is very small relative to

the size of a single subset.

A.5.4.2. Schema and Example

The schema for this type is defined by the bmff-merkle-map rule in the following CDDL Definition:

; The data structure used to store sufficient information to validate a single 'mdat' box or

; a portion of an 'mdat' box when a Merkle tree is used",
bmff-merkle-map = {

"uniqueId": int, ; A unique integer used to differentiate local -ds

"localIld": int, ; A local id indicating Merkle tree.

"location": int, ; Zero-based index into the leaf-most Merkle tree row corresponding to
this 'mdat' box or portion of this 'mdat' box

? "hashes": [1x bstr], ; An ordered array representing the set of additional hashes
required to reach a hash in the Merkle tree specified in the manifest from leaf-most (peer
of this node) to root-most (child of node in manifest). Note that this array may not be
present, e.g. if the manifest itself contains the leaf-most row of the Merkle tree. Null
hashes are not included in this array. The algorithm used is determined using the ‘alg’
field from the corresponding entry in the “merkle® field array in the BMFF hash structure.

}

An example in CBOR diagnostic notation (RFC 8949, clause 8) is shown below:

{

"hashes": [
b64'TWVub3JhaA=="

1,
"localIld": 4402,
"location": 2203,
"uniqueId": 1339

}

For non-fragmented asset, the LocalId field in the bmff-merkle-map shall indicate the 'mdat' box. This is a
zero-based index indicating the order of 'mdat' within the file. For fragmented asset, the LocalId field in the bmff-
merkle-map shall be set to the track_-id field of the ' tkhd' box pertaining to the 'mdat' being hashed.

A.5.5. Dynamic stream generation

Many adaptive bitrate streaming (ABR) implementations store a single version of an asset, e.g., as a flat MP4 or in

227

https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/rfc8949

another intermediate format, and generate individual asset streams using various codecs, bitrates, etc. at
consumption time. As a result, such a server shall either hash said streams and create a C2PA Manifest each time the
content is consumed or, if generation is deterministic, create and cache the hashes and C2PA Manifests once and then

embed them at consumption time.

A.5.6. Exclusion List Requirements

For all c2pa.hash.bmff.v2 (deprecated) and c2pa.hash.bmff.v3 assertions, the entries in Example 18,

“Always excluded boxes” shall always appear on the exclusion list. Other entries are allowed but not required.

The entire "uuid' C2PA box shall be excluded. (The 'data’ field is ensuring that other 'uuid' boxes are not

excluded.)

Example 18. Always excluded boxes

xpath = "/uuid"
data = [{ offset = 8, data = b64'2P7D1hs0OSDyS1l1goh37EgQ==" 1}]

Theentire ' ftyp' and "mfra' boxes shall be excluded.

xpath "/ftyp"

xpath = "/mfra"

NOTE Previous versions of this specification included additional mandatory exclusions, but it was
discovered that excluding them is insecure.

For all c2pa.hash.bmff.v2 (deprecated) and c2pa.hash.bmff.v3 assertions where the bmff-hash-map
includes both the hash field and merke fields, the entry in Example 19, “Additional always excluded boxes” shall

appear on the exclusion list.

Example 19. Additional always excluded boxes

xpath = "/mdat"
subset = { { 16, 0 } }

NOTE As indicated in the CDDL Definition above, the c2pa.hash.bmff assertion excludes the entire
"'mdat’' boxin this case, but it was discovered that excluding it is insecure.

As indicated in the CDDL Definition above, a relative byte offset or relative byte offset plus length that exceeds the
length of the box is permitted; bytes beyond the end of the box shall never bed hashed. For example, if the mdat box

is only 12 bytes long, all of it is hashed and the aforementioned mandatory exclusion entry has no effect although it is

228

still required.

A.5.7. Timed-media streams that are neither audio nor video

Timed-media streams that are neither audio nor video, such as text streams for captions, that the claim generator
wishes to make tamper evident shall be handled the same way as audio and video streams.

A.5.8. External references

Externally referenced content declared inside BMFF boxes, such as ina 'dref', 'url', or "urn' box, that the
claim generator wishes to make tamper evident shall not exclude the referencing box and shall include a separate
cloud data assertion for each external reference to be hashed.

A.5.9. Size requirements

If a BMFF-based asset uses 32-bit sizes or offsets in any box(es), e.g. the ' stco' box, and adding boxes to conform to
this specification will push the file size over 4 gigabytes, it is the responsibility of the manifest creator to edit the file to
use appropriate sizes and offsets, e.g. by replacing the ' stco' boxwitha 'co64 ' box, before creating the manifest.

A.6. Embedding manifests into ZIP-based formats

A.6.1. General

Because of its longevity and being an openly published specification, many command file formats are really ZIP
archives, but with a specific organization of the content files. This includes formats such as EPUB, Office Open XML,

Open Document and OpenXPS.

A.6.2. Hashing

A.6.2.1. Hashing the Files

A ZIP-based file format shall be hashed using a collection data hash, where each file contained in the ZIP (except the
C2PA Manifest itself) shall be included. The hash of each file in the collection is computed over the file’s Llocal file
header followed by the compressed and/or encrypted content, and any data description if present. The hash
algorithm used shall be specified in the a'lg field of the collection data hash structure.

The reason that the hash is over the compressed/encrypted content is to enable validation without
NOTE the need to decompress or have the decryption key. This is important for formats that can be
encrypted, such as EPUB.

A.6.2.2. Hashing the ZIP Central Directory

As described in 4.3.12 of the ZIP AppNote, the Central Directory is an array of central directory headers - one per file in
the ZIP archive. It is stored at the end of the ZIP archive and used to locate the files in the ZIP archive and necessary

229

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://www.w3.org/TR/epub/
https://www.iso.org/standard/61796.html
https://www.iso.org/standard/66376.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/

information/metadata about them. It is immediately followed by the End of Central Directory record (ZIP AppNote,

4.3.16), which contains information about the ZIP archive itself.

In order to prevent tampering with the ZIP Central Directory, such as adding new files or modifying information about
the existing files, each "central directory header" in the ZIP Central Directory as well as the the "end of central
directory record" shall be hashed. The hash is computed over the range of bytes from the first byte of the "central
directory header" to the last byte of the "end of central directory record" using the hash algorithm specified in the
alg field of the collection data hash structure.

NOTE The "central directory headers" are stored contiguously and then immediately followed by the "end
of central directory record".

The resultant hash value shall be stored in the zip_central_directory_hash field of the collection data hash

structure.

NOTE Using a specially named file in the list of files was considered, but was not accepted because of the
two-pass scenario described below.

; An array of URIs and their associated hashes
$collection-data-hash-map /= {

"uris": [1x uri-hashed-data-map],

"alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash on each entry of the ‘uris’ array, taken from the C2PA
hash algorithm identifier list.

? "zip_central_directory_hash" : bstr,

}

; The data structure used to store a reference to a URI and 1its hash.
$uri-hashed-data-map /= {

"uri": relative-url-type, ; relative URI reference

"hash": bstr, ; byte string containing the hash value

? "size": size-type, ; Number of bytes of data

? "dc:format": format-string, ; IANA media type of the data

? "data_types": [1x Sasset-type-map], ; additional information about the data's type

}

; with CBOR Head (#) and tail ($) are introduced in regexp, so not needed explicitly
relative-url-type /= tstr .regexp "[-a-zA-Z0-9@:%._\\+~#=]1{2,256}\\.[a-z]{2,6}\\b[-a-zA-Z0-
9@:%_\\+.~#2&//=]%x"

Because the ZIP file needs to be completed prior to the completion of the C2PA Manifest, a two pass approach (as
described for JPEG, BMFF and PDF) shall be used. The first pass creates a ZIP file with a zero-filled
content_credential.c2pafile, and computes the hash of the ZIP Central Directory. The second pass completes
the C2PA Manifest including filling the value of the zip_central_directory_hash field.

One possible implementation of this two-pass approach would be:

« create a ZIP with an zero-filled C2PA Manifest Store file (large enough to be replaced);
« compute the hash of the ZIP Central Directory;

» add the hashtothe zip_central_directory_hashfield of the collection-data-hash-map;

230

« complete the manifest
« overwrite the zero-filled content_credential. c2pa file with the completed manifest data.
When creating the content_credential.c2pa file in the ZIP archive, it shall be stored (compression method 0)

and not encrypted. Its general purpose bit flagand crc-32fields shall be setto 0. The date and time fields
may be set to the time of creation of the ZIP archive, or set to 0. It may have a file comment.

A.6.3. Placement of the Manifest Store

The C2PA Manifest Store shall be stored in the META-INF directory of the ZIP archive with a filename of
content_credential.c2pa and a media type as recommended for external manifests. The file shall be stored
(compression method 0) and not encrypted.

A.6.4. Digitally signing ZIP-based formats

A.6.4.1. EPUB

EPUB’s digital signatures are based on W3C XML DigSig Core, where each file that is signed is listed in the
<Manifest> element of the <Signature> element. In addition, no support exists for signing the ZIP Central
Directory. As such, EPUB native signing shall take place before the introduction of the C2PA Manifest.

A.6.4.2, Office Open XML

OOXML’s digital signatures are based on W3C XML DigSig Core, where each file that is signed is listed as a
<Reference> element in the <Manifest> element of the <Signature> element. In addition, no support exists
for signing the ZIP Central Directory. As such, OOXML native signing shall take place before the introduction of the
C2PA Manifest.

NOTE OpenXPS is based on the same Open Packaging Convention (OPC) standard as OOXML, and as such,
the same approach applies.

231

https://www.w3.org/TR/xmldsig-core1/
https://www.w3.org/TR/xmldsig-core1/

Appendix B: Implementation Details for

c2pa.metadata

The c2pa.metadata assertion shall only contain the subset of schemas and their fields as described below.

However custom metadata assertions may contain any values from these or other schemas.

A machine readable list of all the valid schemas and their fields can be found on the C2PA

NOTE o i
Specification Website.

The values present in a c2pa.metadata assertion may be unique to the metadata assertion or they may be taken
from the standard "metadata blocks" of the asset format. In either case, they shall be serialized according to the rules

of JSON-LD serialization of XMP as described here.

B.1. Completely Supported Schemas

The following schemas/namespaces, in Table 15, “Completely supported schemas”, are supported in full by any

signer:

Table 15. Completely supported schemas
Name

XMP Basic

XMP Media Management

XMP Paged-Text

Camera Raw

PDF

Namespace

http://ns.adobe.com/xap/1.0/
http://ns.adobe.com/xap/1.0/mm/
http://ns.adobe.com/xap/1.0/t/pg/
http://ns.adobe.com/camera-raw-settings/1.0/

http://ns.adobe.com/pdf/1.3/

B.2. Partially Supported Schemas

The following schemas/namespaces, in Table 16, “Partially supported schemas”, are only supported in part.

Table 16. Partially supported schemas
Name

Dublin Core (DC)

IPTC Core

IPTC Extension

Exif

ExIifEx

232

Namespace
http://purl.org/dc/elements/1.1/
http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/
http://iptc.org/std/Iptc4xmpExt/2008-02-29/
http://ns.adobe.com/exif/1.0/

http://cipa.jp/exif/1.0/exifEX

https://c2pa.org/specifications/specifications/2.1/specs/C2PA_Specification.html
https://c2pa.org/specifications/specifications/2.1/specs/C2PA_Specification.html
https://www.iso.org/standard/79384.html
https://developer.adobe.com/xmp/docs/XMPNamespaces/xmp/
https://developer.adobe.com/xmp/docs/XMPNamespaces/xmpMM/
https://developer.adobe.com/xmp/docs/XMPNamespaces/xmpTPg/
https://developer.adobe.com/xmp/docs/XMPNamespaces/crs/
https://developer.adobe.com/xmp/docs/XMPNamespaces/pdf/
https://developer.adobe.com/xmp/docs/XMPNamespaces/dc/
http://iptc.org/std/photometadata/specification/IPTC-PhotoMetadata-2023.1.html#iptc-core-schema-1-4-specifications
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#iptc-extension-schema-1-8-specifications
https://developer.adobe.com/xmp/docs/XMPNamespaces/exif/
https://exiv2.org/tags-xmp-exifEX.html

Name Namespace

Photoshop http://ns.adobe.com/photoshop/1.0/

TIFF http://ns.adobe.com/tiff/1.0/

XMP Dynamic Media http://ns.adobe.com/xmp/1.0/DynamicMedia/
PLUS http://ns.useplus.org/ldf/xmp/1.0/

B.2.1. Dublin Core (DC)
Only the following Dublin Core (dc) properties are supported:

« dc:coverage

« dc:date

« dc:format

« dc:identifier
« dc:language

« dc:relation

« dc:type
B.2.2. IPTC Core
Only the following IPTC Core (Iptc4xmpCore) properties are supported:

« Iptc4xmpCore:Scene

NOTE Some IPTC Core properties have been superseded by newer versions in the IPTC Extension schema.

B.2.3. IPTC Extension
Only the following IPTC Extension (Iptc4xmpExt) properties are supported:

o Iptc4xmpExt:DigImageGUID

« Iptc4xmpExt:DigitalSourceType
« Iptc4xmpExt:EventId

« Iptcd4xmpExt:Genre

+ Iptc4xmpExt:ImageRating

Iptc4xmpExt:ImageRegion
o Iptc4xmpExt:RegistryId

« Iptc4xmpExt:LocationCreated

233

https://developer.adobe.com/xmp/docs/XMPNamespaces/photoshop/
https://developer.adobe.com/xmp/docs/XMPNamespaces/tiff/
https://developer.adobe.com/xmp/docs/XMPNamespaces/xmpDM/
http://ns.useplus.org/LDF/ldf-XMPSpecification

« Iptc4xmpExt:LocationShown
o Iptc4xmpExt:MaxAvailHeight

+ Iptc4xmpExt:MaxAvailWidth

For more information about these, refer to https://www.iptc.org/std/photometadata/specification/IPTC-
PhotoMetadata#xmp-namespaces-and-identifiers-2.

B.2.4. Exif
Only the following Exif properties, in Table 17, “Supported Exif Properties”, are supported:

Table 17. Supported Exif Properties

234

https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#xmp-namespaces-and-identifiers-2
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#xmp-namespaces-and-identifiers-2

exif:ApertureValue
exif:BrightnessValue
exif:CFAPattern
exif:ColorSpace

exif:CompressedBitsPerP

ixel

exif:Contrast
exif:CustomRendered
exif:DateTimeDigitized
exif:DateTimeOriginal
exif:DeviceSettingDescr
iption
exif:DigitalZoomRatio
exif:ExifVersion
exif:ExposureBiasValue
exif:Exposurelndex
exif:ExposureMode
exif:ExposureProgram
exif:ExposureTime
exif:FileSource
exif:Flash
exif:FlashEnergy
exif:FlashpixVersion
exif:FNumber
exif:FocallLength
exif:FocalLengthIn35mmF
ilm
exif:FocalPlaneResoluti
onUnit
exif:FocalPlaneXResolut
ion
exif:FocalPlaneYResolut

ion

exif:GainControl
exif:ImageUniquelD
exif:ISOSpeedRatings
exif:LightSource
exif:MaxApertureValue
exif:MeteringMode
exif:0ECF
exif:0ffsetTimeOriginal
exif:PixelXDimension
exif:PixelYDimension
exif:RelatedSoundFile
exif:Saturation
exif:SceneCaptureType
exif:SceneType
exif:SensingMethod
exif:Sharpness
exif:ShutterSpeedValue

exif:SpatialFrequencyRe

sponse

exif:SpectralSensitivit

y

exif:SubjectArea
exif:SubjectDistance

exif:SubjectDistanceRan
ge
exif:SubjectlLocation

exif:WhiteBalance

exif:
exif:
exif:
exif:
exif:
exif:
exif:
exif:
exif:
exif:
exif:

exif:

or
exif:
exif:
exif:
exif:
exif:
exif:

exif:

exif:
exif:
exif:
exif:
exif:
exif:
exif:

exif:

GPSAltitude
GPSAltitudeRef
GPSDateStamp
GPSDestBearing
GPSDestBearingRef
GPSDestDistance
GPSDestDistanceRef
GPSDestLatitude
GPSDestLongitude
GPSDifferential
GPSDOP

GPSHPositioningErr

GPSImgDirection
GPSImgDirectionRef
GPSLatitude
GPSLongitude
GPSMapDatum
GPSMeasureMode

GPSProcessingMetho

GPSSatellites
GPSSpeed
GPSSpeedRef
GPSStatus
GPSTimeStamp
GPSTrack
GPSTrackRef

GPSVersionID

235

B.2.5. ExifEx
Only the following ExifEx properties are supported:

« exifEX:BodySerialNumber

+ exifEX:Gamma

« exifEX:InteroperabilityIndex

« exifEX:ISOSpeed

« exifEX:ISOSpeedLatitudeyyy

« exifEX:ISOSpeedlLatitudezzz

« exifEX:LensMake

» exifEX:LensModel

+ exifEX:LensSerialNumber

« exifEX:LensSpecification

« exifEX:PhotographicSensitivity
+ exifEX:RecommendedExposureIndex
« exifEX:SensitivityType

« exifEX:StandardOutput-Sensitivity

For more information about these, refer to https://www.cipa.jp/std/documents/download_e.htm[?DC-010-2020_E.

B.2.6. Photoshop
Only the following Photoshop properties are supported:

« photoshop:Category

« photoshop:City

« photoshop:ColorMode

« photoshop:Country

« photoshop:DateCreated

+ photoshop:DocumentAncestors
« photoshop:History

+ photoshop:ICCProfile

+ photoshop:State

« photoshop:SupplementalCategories

236

https://www.cipa.jp/std/documents/download_e.html?DC-010-2020_E

« photoshop:TextLayers
+ photoshop:TransmissionReference

+ photoshop:Urgency

B.2.7. TIFF
Only the following TIFF properties are supported:

« tiff:BitsPerSample

« tiff:Compression

« tiff:DateTime

« tiff:ImagelLength

« tiff:ImageWidth

« tiff:Make

« tiff:Model

« tiff:0rientation

« tiff:PhotometricInterpretation
« tiff:PlanarConfiguration
« tiff:PrimaryChromaticities
+ tiff:ReferenceBlackWhite
« tiff:ResolutionUnit

« tiff:SamplesPerPixel

« tiff:Software

« tiff:TransferFunction

« tiff:WhitePoint

« tiff:XResolution

« tiff:YResolution

« tiff:YCbCrCoefficients

« tiff:YCbCrPositioning

« tiff:YCbCrSubSampling

B.2.8. XMP Dynamic Media

Only the following XMP Dynamic Media (xmpDM) properties, in Table 18, “XMP Dynamic Media properties”, are
supported:

237

Table 18. XMP Dynamic Media properties

xmpDM: absPeakAudioFileP

ath

XmpDM:
XmpDM:
XmpDM:
xmpDM:
XmpDM:
xmpDM:
XmpDM:
xmpDM:
XmpDM:
XmpDM:
XmpDM:
XmpDM:
XmpDM:
xmpDM:
xmpDM:
XmpDM:
xmpDM:
XmpDM:
xmpDM:
XmpDM:
XmpDM:
XmpDM:

XmpDM:

album
altTapeName
altTimecode
audioChannelType
audioCompressor
audioSampleRate
audioSampleType
beatSpliceParams
cameraAngle
cameralabel
cameraMode'l
cameraMove
comment
contributedMedia
duration
fileDataRate
genre

good

instrument
introTime

key

logComment

loop

B.2.9. PLUS

XxmpDM:
XmpDM:
XmpDM:
XmpDM:
XmpDM:

xmpDM:

xmpDM: relativePeakAudio

numberOfBeats
markers
outCue
projectName
projectRef

pullDown

FilePath

xmpDM: relativeTimestamp

XxmpDM:
XmpDM:
XmpDM:
XmpDM:
XmpDM:
XmpDM:
xmpDM:
xmpDM:
XmpDM:
xmpDM:
XmpDM:
xmpDM:

XmpDM:

Only the following PLUS properties are supported:

« plus:FileNameAsDelivered

« plus:FirstPublicationDate

238

releaseDate
resampleParams
scaleType
scene

shotDate
shotDay
shotLocation
shotName
shotNumber
shotSize
speakerPlacement
startTimecode

stretchMode

xmpDM:
XmpDM:
XmpDM:
XmpDM:
XmpDM:
xmpDM:
XmpDM:

XxmpDM:

« XxmpDM:

takeNumber
tapeName

tempo
timeScaleParams
timeSignature
trackNumber
Tracks
videoAlphaMode

videoAlphaPremult

ipleColor

XmpDM:

videoAlphaUnityIs

Transparent

XmpDM:
XmpDM:
XmpDM:
xmpDM:
xmpDM:

XmpDM:
atio

XmpDM:
xmpDM:
XmpDM:

XmpDM:

videoColorSpace
videoCompressor
videoFieldOrder
videoFrameRate
videoFrameSize

videoPixelAspectR

videoPixelDepth
partOfCompilation
lyrics

discNumber

« plus:ImageFileFormatAsDelivered
« plus:ImageFileSizeAsDelivered
+ plus:ImageType

« plus:Version

For more information about these, refer to http://ns.useplus.org/LDF/ldf-XMPSpecification.

239

http://ns.useplus.org/LDF/ldf-XMPSpecification

Appendix C: Considerations for Deprecation

C.1. Status of Constructs

The table below lists constructs whose status has changed as this specification has evolved.

The following status values are used:

DEPRECATED

Construct is deprecated (claim generators are required not to produce it; validators are encouraged to accept it).

UNDEFINED

Construct is not defined (validators are required to ignore it).

<blank>

Construct is fully supported (validators are required to accept it).

Table 19. Status of constructs

Construct Type v1l.3
Time-Stamp Manifest UNDEFINED
manifest

urn:uuid Label

namespace

urn:c2pa Label UNDEFINED
namespace

c2pa.data Label

(Data Box)

c2pa.datab | gpel

oxes (Data

Box Store)

sigTst Time-stamp

timestamp

sigTst2 Time-stamp UNDEFINED
timestamp

c2pa.claim assertion

c2pa.claim Assertion UNDEFINED
.Vv2

c2pa.actio agsertion

ns

240

vl.4 v2.0 v2.1
UNDEFINED UNDEFINED

DEPRECATED
UNDEFINED UNDEFINED

DEPRECATED
UNDEFINED UNDEFINED

DEPRECATED DEPRECATED

UNDEFINED

v2.2

UNDEFINED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

Construct

c2pa.actio
ns.v2

Cc2pa.asset
-type

Cc2pa.asset
-type.v2

c2pa.certi
ficate-
status

c2pa.embed
ded-data

c2pa.font.
info

c2pa.hash.
bmff

c2pa.hash.
bmff.v2

c2pa.hash.
bmff.v3

c2pa.hash.
collection
.data

c2pa.hash.
multi-
asset

c2pa.ingre
dient

c2pa.ingre
dient.v2

c2pa.ingre
dient.v3

stds.metad
ata

c2pa.metad
ata

c2pa.thumb
nail.claim

c2pa.thumb
nail.claim
KX

c2pa.thumb
nail.ingre
dient
c2pa.thumb
nail.ingre
dient.x*

Type

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

Assertion

vl1l.3

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

DEPRECATED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

vl.4

UNDEFINED

UNDEFINED

UNDEFINED

DEPRECATED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

v2.0

UNDEFINED

UNDEFINED

UNDEFINED

DEPRECATED

UNDEFINED

UNDEFINED

UNDEFINED

DEPRECATED

UNDEFINED

DEPRECATED

UNDEFINED

UNDEFINED

v2.1

UNDEFINED

UNDEFINED

UNDEFINED

DEPRECATED

UNDEFINED

DEPRECATED

UNDEFINED

DEPRECATED

DEPRECATED

DEPRECATED

UNDEFINED

UNDEFINED

v2.2

DEPRECATED

DEPRECATED

UNDEFINED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

241

Construct

c2pa.time-
stamp

font.info
stds.iptc
stds.exif

stds.schem
a-org

rolein
region-map

actorsin
action-
items-map-
v2

softwareAg

entsin
actions-
map-v2

softwareAg

entIndexin
action-
common-
map-v2

changedin
action-
items-map-
v2

changesin
action-
items-map-
v2

instancelD
in
parameters
-map-v2
sourcelang

uagein
parameters
-map-v2

targetlLang

uagein
parameters
-map-v2

c2pa.train
edAlgorith
micData

242

Type

Assertion

Assertion
Assertion
Assertion

Assertion

Field

Field

Field

Field

Field

Field

Field

Field

Field

DigitalSourceT
ype

vl1l.3

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

vl.4

UNDEFINED

UNDEFINED

DEPRECATED

DEPRECATED

DEPRECATED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

v2.0

UNDEFINED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

v2.1

UNDEFINED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

v2.2

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

DEPRECATED

Construct

http://c2p
a.org/
digitalsou
rcetype/
trainedAlg
orithmicDa
ta

http://c2p
a.org/
digitalsou
rcetype/
empty

Type vl.3

DigitalSourceT UNDEFINED
ype

DigitalSourceT UNDEFINED
ype

vl.4

UNDEFINED

UNDEFINED

v2.0

UNDEFINED

UNDEFINED

v2.1

UNDEFINED

UNDEFINED

v2.2

243

http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/trainedAlgorithmicData
http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/empty
http://c2pa.org/digitalsourcetype/empty

	Content Credentials : C2PA Technical Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.2. Scope
	1.3. Technical Overview

	Chapter 2. Glossary
	2.1. Introductory terms
	2.2. Assets and Content
	2.3. Core Aspects of C2PA
	2.4. Additional Terms
	2.5. Overview

	Chapter 3. Normative References
	3.1. Core Formats
	3.2. Schemas
	3.3. Digital & Electronic Signatures
	3.4. Embeddable Formats
	3.5. Other

	Chapter 4. Standard Terms
	Chapter 5. Versioning
	5.1. Compatibility
	5.2. Version History

	Chapter 6. Assertions
	6.1. General
	6.2. Labels
	6.3. Versioning
	6.4. Multiple Instances
	6.5. Schema Validation
	6.6. Assertion Store
	6.7. Embedded vs Externally-Stored Data
	6.8. Redaction of Assertions
	6.9. Specifications of time in assertions

	Chapter 7. Data Boxes
	7.1. General
	7.2. Schema and Example

	Chapter 8. Unique Identifiers
	8.1. Uniquely Identifying C2PA Manifests and Assets
	8.2. Versioning Manifests Due to Conflicts
	8.3. Identifying Non-C2PA Assets
	8.4. URI References

	Chapter 9. Binding to Content
	9.1. Overview
	9.2. Hard Bindings
	9.3. Soft Bindings

	Chapter 10. Claims
	10.1. Overview
	10.2. Syntax
	10.3. Creating a Claim
	10.4. Multiple Step Processing

	Chapter 11. Manifests
	11.1. Use of JUMBF
	11.2. Types of Manifests
	11.3. Embedding manifests into various file formats
	11.4. External Manifests
	11.5. Embedding a Reference to an external Manifest

	Chapter 12. Entity Diagram
	Chapter 13. Cryptography
	13.1. Hashing
	13.2. Digital Signatures

	Chapter 14. Trust Model
	14.1. Overview
	14.2. Identity of Signers
	14.3. Validation states
	14.4. Trust Lists
	14.5. X.509 Certificates

	Chapter 15. Validation
	15.1. Validation Process
	15.2. Returning Validation Results
	15.3. Displaying Manifest Information
	15.4. Determining the hashing algorithm
	15.5. Locating the Active Manifest
	15.6. Locating and Validating the Claim
	15.7. Validate the Signature
	15.8. Validate the Time-Stamp
	15.9. Validate the Credential Revocation Information
	15.10. Validate the Assertions
	15.11. Validate the Ingredients
	15.12. Validate the Asset’s Content

	Chapter 16. User Experience
	16.1. Approach
	16.2. Principles
	16.3. Disclosure Levels
	16.4. Public Review, Feedback and Evolution

	Chapter 17. Information security
	17.1. Threats and Security Considerations
	17.2. Harms, Misuse, and Abuse

	Chapter 18. C2PA Standard Assertions
	18.1. Introduction
	18.2. Regions of Interest
	18.3. Metadata About Assertions
	18.4. Standard C2PA Assertion Summary
	18.5. Data Hash
	18.6. BMFF-Based Hash
	18.7. General Box Hash
	18.8. Collection Data Hash
	18.9. Multi-Asset Hash
	18.10. Soft Binding
	18.11. Cloud Data
	18.12. Embedded Data
	18.13. Thumbnail
	18.14. Actions
	18.15. Ingredient
	18.16. Metadata
	18.17. Time-stamps
	18.18. Certificate Status
	18.19. Asset Reference
	18.20. Asset Type
	18.21. Depthmap
	18.22. Font Information

	Chapter 19. Patent Policy
	Appendix A: Embedding manifests
	A.1. Supported Formats
	A.2. Embedding manifests in multi-part assets
	A.3. Embedding manifests into non-BMFF-based assets
	A.4. Embedding manifests into PDFs
	A.5. Embedding manifests into BMFF-based assets
	A.6. Embedding manifests into ZIP-based formats

	Appendix B: Implementation Details for c2pa.metadata
	B.1. Completely Supported Schemas
	B.2. Partially Supported Schemas

	Appendix C: Considerations for Deprecation
	C.1. Status of Constructs

